SAP® PowerDesigner®
Document Version: 16.6 — 2016-02-22

Content

11
12
13
1.4
1.5
1.6
17
1.8
19

21
2.2
2.3
2.4
25
2.6

2.7

2.8

2.9
2.10

211
212

PowerDesigner ResourceFiles. i i i s s e 9
Opening Resource Filesinthe Editor. 10
Navigating and Searching in Resource Files. 11
Editing Resource Files. 13
Saving Changes. oo 13
Sharing and Embedding Resource Files. 13
Creating and Copying Resource Files. 14
Specifying Directories to Search for Resource Files. 15
Comparing Resource Files. 15
Merging Resource Files. 16
Extension Files. oot i it i s e s 18
Creatingan Extension File. 19
Attaching ExtensionstoaModel. 20
Exporting an Embedded Extension File for Sharing. 21
Extension File Properties. 21
Example: Adding a New Attribute froma Property Sheet. o 23
Example: Creating Robustness Diagram Extensions. 24
Creating New Types of Objects with Stereotypes. 25
Specifying Custom Symbols for Robustness Objects. 27
Example: Creating Custom Checks on Instance Links. 28
Example: Defining Templates to Extract Message Descriptions. 33
Example: Creating a Generated File for the Message Information. 35
Example: Testing the Robustness Extensions. 37
Metaclasses (Profile). 39
Extended Objects, Sub-Objects, and Links (Profile). 42
Stereotypes (Profile). 43
Creating New Metaclasses with Stereotypes. 46
Criteria (Profile). 47
Extended Attributes (Profile). e 48
Calculated Attribute Scripts. 52
Creating an Extended Attribute Type. 54
Specifying lcons for Attribute Values. 55
Linking Objects Through Extended Attributes. 57
Aggregating Attribute Values with Aggregated Metrics. 57
Extended Collections and Compositions (Profile). 58
Calculated Collections (Profile). 61

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Content

213

214

2.15

2.16

217

218
2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

31
3.2
3.3
3.4

35

Dependency Matrices (Profile). 63
Specifying Advanced Dependencies. 66
Forms (Profile). . . . o 67
Adding Extended Attributes and Other Controlsto Your Form. 69
Example: Creating Common Form Controls. 73
Example: Creatinga Property Sheet Tab. 75
Example: IncludingaForminaForm. 78
Example: Opening a Dialog from a Property Sheet. 81
Custom Symbols (Profile). 84
Custom Checks (Profile). 86
Example: PDM Custom Check. 88
Example: PDM AUtOfiX. . . . oo 88
Event Handlers (Profile). 90
Example: Setting Default Property Values. 94
Methods (Profile). e 95
Menus (Profile). 96
Example: Opening a Dialog Box fromaMenu. 98
Templates (Profile). 100
Generated Files (Profile). 101
Example: JavaGenerated Fileand Templates. 103
Generating Your Files in a Standard or Extended Generation. 105
Transformations (Profile). 107
Transformation Profiles (Profile). 109
Developing Transformation Scripts. 110
XML Imports (Profile).o 111
XMLIMPOrt Mappings. . . . oo oot 112
Metamodel Mapping Properties. 116
Metamodel Object Properties. 117
Object Generations (Profile). 118
Model-to-Model Generation Mappings. 119
Chart Datasets (Profile). 120
Chart Examples. 122
Global Script (Profile). 126
Object, Process, and XML Language DefinitionFiles. 127
Settings Category: Process Language. 129
Settings Category: Object Language. 131
Settings Category: XML Language. 132
Generation Category. 132
Example: Adding a Generation Option. 133
Example: Adding a Generation Commandand Task. 135
Profile Category (Definition Files). 138

Customizing and Extending PowerDesigner

Content

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 3

4 DBMS Definition Files. it i e et m e 139
41 Triggers Templates, Trigger Template ltems, and Procedure Templates. 140
4.2 Database Generation and Reverse Engineering. 140
Script Generation. 141
Script Reverse Engineering. 144
Live Database Generation. 145
Live Database Reverse Engineering. 146
Defining Generation and Reverse-Engineering of New Metaclasses. 153
Adding Scripts Before or After Generation and Reverse Engineering. 154
4.3 General Category (DBMS). 154
4.4 Script/Sql Category (DBMS). 155
Syntax Category (DBMS). 155
Format Category (DBMS). o 156
File Category (DBMS). . . . o 158
Keywords Category (DBMS).o 159
4.5 Script/Objects Category (DBMS). 161
Common Object [tems. 163
Table Category (DBMS). 167
Column Category (DBMS). o 171
Index Category (DBMS). 178
Pkey Category (DBMS). 181
Key Category (DBMS). 182
Reference Category (DBMS). 184
View Category (DBMS). 187
Tablespace Category (DBMS). 189
Storage Category (DBMS). oo 189
Database Category (DBMS). 190
Domain Category (DBMS).o 191
Abstract Data Type Category (DBMS). 192
Abstract Data Type Attribute Category (DBMS). 194
User Category (DBMS). e 195
Rule Category (DBMS). 195
Procedure Category (DBMS). 198
Trigger Category (DBMS). 199
DBMS Trigger Category (DBMS). 202
JoinIndex Category (DBMS). 203
Qualifier Category (DBMS). 204
Sequence Category (DBMS). e 204
Synonym Category (DBMS). 205
Group Category (DBMS). . . . o . 206
Role Category (DBMS). 207

Customizing and Extending PowerDesigner
4 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Content

4.6
4.7

4.8
4.9

410

DB Package Category (DBMS). 208
DB Package Sub-objects Category (DBMS). 208
Parameter Category (DBMS). 209
Privilege Category (DBMS). 210
Permission Category (DBMS). 211
Default Category (DBMS).o 212
Web Service and Web Operation Category (DBMS). 213
Web Parameter Category (DBMS). 214
Result Column Category (DBMS). 214
Dimension Category (DBMS). 215
Extended Object Category (DBMS). 216
Script/Data Type Category (DBMS). 216
Profile Category (DBMS). 218
Using Extended Attributes During Generation. 219
Modifying the Estimate Database Size Mechanism. 220
ODBC Category (DBMS). e 224
Physical Options (DBMS). 224
Simple Physical Options. 225
Composite Physical Options. 227
Adding DBMS Physical Optionsto Your Forms. 228
PDM Variables and Macros. 230
Testing Variable Values withthe [JOperators. 231
Formatting Variable Values. 233
Variables for Tablesand Views. 234
Variables for Columns, Domains, and Constraints. 235
Variables for Keys. . .. 237
Variables for Indexes and Index Columns. 238
Variables for References and Reference Columns. 239
Variables for Triggers and Procedures. 240
Variables for Rules. 242
Variables for SEqQUENCES. 242
Variables for Synonyms. 242
Variables for Tablespaces and Storages. 243
Variables for Abstract Data Types. 243
Variables for Join Indexes (1Q). 245
Variables for ASE & SQL Server. 246
Variables for Database Synchronization. 246
Variables for DB Packages and Their Child Objects. 247
Variables for Database Security. 249
Variables for Defaults. 250
Variables for Web Services. 250

Customizing and Extending PowerDesigner

Content

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 5

51
5.2
53
54

55
5.6
5.7
58
59
510
511

512
513

Variables for DIMensions. 252
Variables for Extended Objects. 253
Variables for Reverse Engineering. 253
Variables for Database, Triggers, and Procedures Generation. 254
AKCOLN, .FKCOLN, and .PKCOLN MaCros. oot 255
ALLCOL MACIO. .« oot e 256
DEFINEMaACro. . . oo 257
DEFINEIF Macro. . . .o 257
ERROR MaACKo. o 258
FOREACH_CHILD MacCro. o 259
FOREACH_COLUMN MACKO. .« . oot e e e 260
FOREACH_PARENT MacCro. oo 261
ANCOLN MACIO. oo 262
JOINMaACKO. .« oo 263
NMFECOLMaACIO. . . .o 264
.CLIENTEXPRESSION and .SERVEREXPRESSIONMacros. 265
SOLXML MACro. .« o 266
Customizing Generationwith GTL. i i i i it m e nn s anannns 268
Creatinga Templateand a Generated File. 268
Extracting Object Properties. 269
Accessing Collections of Sub-Objects or Related Objects. 270
Formatting Your Output. 271
Controlling Line Breaks in Head and Tail Strings. 273
Conditional BIOCKS. o 273
Accessing Global Variables. 274
GTL OpErators . . o o 275
Translation SCope. 278
Shortcut Translation. 278
Escape SeqUENCES. 279
Calling Templates. 280
Inheritance and Polymorphism. 280
Passing Parameterstoa Template. 283
Recursive Templates. 284
GTL-Specific Metamodel Extensions. 284
GTLMacro Reference. 286
abort_command Macro. 287
block Macro. . . oo 287
DOOIMACIO. . oo 288
break Macro. . . .o 288
.change_dirand .create_path Macros. 289
.ccommentand .// Macro. 289

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Content

514

6.1
6.2
6.3

7.2

7.3

.convert_name and .convert_code Macros. 289
deleteand .replace Macros. 290
errorand .warning Macros. o . o 291
.execute_command Macro. 292
.execute_vbscript Macro. 293
foreach_item Macro. 293
foreach_line Macro. 295
foreach_part Macro. 296
JEMaACrO. o 298
dog Macro. . . 300
Jlowercase and .uppercase Macros. 300
.objectand .collection Macros. 301
set_interactive_mode Macro., 302
.set_object, .set_value, and .unset Macros. 302
UNIQUE MACIO. . . o o 305
VhSCript Macro. . ..o 305
GTL Syntaxand Translation Errors. 307
Translating Reports with Report LanguageFiles. it i e 310
Opening a Report Language File. 311
Creating a Report Language File foraNew Language. 312
Report Language File Properties. 313
Values Mapping Category. 314
Report Titles Category. 317
Object Attributes Category. 321
Profile/Linguistic Variables Category. 324
Profile/Report Item Templates Category. 326
Scripting PowerDesigner. i i e it e e e e e e 328
Running Scripts in PowerDesigner. 329
VBScript File Samples. 331
Manipulating Models, Collections, and Objects (Scripting). 334
Creating and Opening Models (Scripting). 335
Browsing and Modifying Collections (Scripting). 336
Accessing and Modifying Objects and Properties (Scripting). 338
Creating Objects (Scripting). 339
Displaying, Formatting, and Positioning Symbols (Scripting). L 340
Deleting Objects (Scripting). 341
Creating an Object Selection (Scripting). 342
Controlling the Workspace (Scripting). 343
Manipulating the Repository (Scripting). 344
Creating Repository Groups, Usersand Folders. 344

Customizing and Extending PowerDesigner

Content

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 7

7.4
7.5
7.6
7.7
7.8
7.9
7.10
711

712

81
8.2
8.3

Checking Documents Inand Out (Scripting). 347
Creating Configurations (Scripting). 347
Creating Shortcuts (Scripting). o 348
Creating Mappings Between Objects (Scripting). 349
Creating and Generating Reports (Scripting). 350
Generating a Database (Scripting). 350
Reverse Engineering a Database (Scripting). 352
Creating and Accessing Extensions (Scripting). 353
Accessing Metadata (Scripting). 354
OLE Automationand Add-Ins. 355
Creatingan ActiveX Add-in. 358
Creatingan XML File Add-in. o 359
Launching Scripts and Add-Ins fromMenus. 361
Adding Commandstothe ToolsMenu. 362
The PowerDesigner Public Metamodel.ttt 366
Navigating inthe Metamodel. 367
Using the Metamodel Objects Help File. e 369
PowerDesigner Model File Format. 371
Example: Simple OOM XML File. 373

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Content

1 PowerDesigher Resource Files

The SAP® PowerDesigner® modeling environment is powered by XML-format resource files, which define the
objects available in each model along with the methods for generating and reverse-engineering them. You can
view, copy, and edit the provided resource files and create your own in order to customize and extend the
behavior of the environment.

The following types of resource files, based on or extending the PowerDesigner public metamodel are provided:

e Definition file: customize the metamodel to define the objects available for a specific DBMS or language:

o DBMS definition files (.xdb) - define a specific DBMS in the PDM (see DBMS Definition Files [page 139]).
o Process, object, and XML language definition files (.xpl, .xol, and .xsl) — define a specific language in the
BPM, OOM, or XSM (see Object, Process, and XML Language Definition Files [page 127]).

e Extension files (.xem) — extend the standard definitions of target languages to, for example, specify a
persistence framework or server in an OOM. You can create or attach one or more XEMs to a model (see
Extension Files [page 18]).

e Report templates (.rtp) - specify the structure of a report. Editable within the Report Template Editor (see
Core Features Guide > Modeling with PowerDesigner > Reports).

e Report language files (.xrl) — translate the headings and other standard text in a report (see Translating
Reports with Report Language Files [page 310]).

e |mpact and lineage analysis rule sets (.rul) - specify the rules defined for generating impact and lineage
analyses (see Core Features Guide > Linking and Synchronizing Models > Impact and Lineage Analysis).

e Object permission profiles (.ppf) - customize the PowerDesigner interface to hide models, objects, and
properties (see Core Features Guide > Administering PowerDesigner > Customizing the PowerDesigner
Interface > Using Profiles to Control the PowerDesigner Interface).

e User profiles (.upf) - store preferences for model options, general options, display preferences, etc (see Core
Features Guide > Modeling with PowerDesigner > Customizing Your Modeling Environment > User Profiles).

e Model category sets (.mcc) - customize the New Model dialog to guide model creation (see Core Features
Guide > Administering PowerDesigner > Customizing the PowerDesigner Interface > Customizing the New
Model Dialog).

e Conversion tables (.csv) - define conversions between the name and code of an object (see Core Features
Guide > Modeling with PowerDesigner > Objects > Naming Conventions).

You can review all the available resource files from the lists of resource files, available by selecting [Tools

Resources # <type> 4.

The following tools are available on each resource file list:

Table 1:
Tool Description
|§T| Properties - Opens the resource file in the Resource Editor.
|E| New - Creates a new resource file using an existing file as a model (see Creating and Copying Resource Files
[page 14]).

Customizing and Extending PowerDesigner
PowerDesigner Resource Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Tool Description

g Save - Saves the selected resource file.

|El Save All - Saves all the resource files in the list.

|E| Path - Specifies the directories that PowerDesigenr should search to populate the list (see Specifying Directories
to Search for Resource Files [page 15]).

|E| Compare - Selects two resource files for comparison.

|@| Merge - Selects two resource files for merging.

|§| Check In - [if the repository is installed] Checks the selected resource file into the repository. For information
about storing your resource files in the repository, see Core Features Guide > Administering PowerDesigner > De-
ploying an Enterprise Glossary and Library.

|§| Update from Repository - [if the repository is installed] Checks out a version of the selected file from the reposi-

o tory to your local machine.

|§| Compare with Repository - [if the repository is installed] Compares the selected file with a resource file stored in
the repository.

1.1 Opening Resource Files in the Editor

When working with a BPM, PDM, OOM, or XSM, you can open the definition file that controls the objects available
in your model in the Resource Editor for viewing and editing. You can also open and edit any extension files
currently attached to or embedded in your model or access the appropriate list of resource files and open any
PowerDesigner resource file.

To open the definition file currently used by your model:

® InaPDM, select |» Database » Edit Current DBMS 3.

e |naBPM, select|F Language ¥ Edit Current Process Language 3.
e Inan OOM, select |+ Language ¥ Edit Current Object Language 3.
® Inan XSM, select | Language ¥ Edit Current Language 3.

To open any extension file currently attached to your model, double-click its entry inside the Extensions category
in the Browser.

To open any other resource file, select | Tools » Resources # <Type > 4to open the relevant resource file list,
select a file in the list, and then click the Properties tool.

In each case, the file opens in the Resource Editor, in which you can review and edit the structure of the resource.
The left-hand pane shows a tree view of the entries contained within the resource file, and the right-hand pane
displays the properties of the currently-selected element:

Customizing and Extending PowerDesigner
10 © 2016 SAP SE or an SAP affiliate company. All rights reserved. PowerDesigner Resource Files

IF pBMS Properties (For all Models) _ O] x|

General | Trigger Templatesl Trigger Template Itemsl Frocedure Templatesl

Root \ - - ISYASIQ'I 520 Profilet ColumnE stended Attributest ndexCode ﬂ \% - lg - '?if 52}
Sybaze 10 15.2 - . .
E:I Generation —{| General | Get Method Script I Global Script I
(\ Name: IInde:-:Code
. B+ Settings Label: I
Categories 243 Profie
{E:' Shared Comment: Code of the first index defined on the column ﬂ
-2 Column
Items / =
[1ata type: I [String) jul!l
\._ ¥ Computed: " Read/write [Get+5Set methods) % Fead only (Get method)
RevColPartition Default value: I j _l Template [
o -39 WalueNeadQuate) _
Properties -5 Fams _| List af valugs: I |__1I|Q Complete [
[(- hd

1] 4 I Cancel | Spply | Help

1 Note

You should never modify the resource files shipped with PowerDesigner. If you want to modify a file, create a
copy using the New tool (see Creating and Copying Resource Files [page 14]).

Each entry is a part of the definition of a resource file, and entries are organized into logical categories. For
example, the Script category in a DBMS language file collects together all the entries relating to database
generation and reverse engineering.

You can drag and drop categories or entries in the tree view of the resource editor and also between two resource
editors of the same type (for example two XOL editors).

1 Note

Some resource files are delivered with "Not Certified" in their names. We will perform all possible validation
checks, but we do not maintain specific environments to fully certify these resource files. We will support them
by accepting bug reports and providing fixes as per standard policy, with the exception that there will be no
final environmental validation of the fix. You are invited to assist us by testing fixes and reporting any
continuing inconsistencies.

1.2 Navigating and Searching in Resource Files

The tools at the top of the Resource Editor help you to navigate through and search in the resource file.

Customizing and Extending PowerDesigner
PowerDesigner Resource Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 1

Go Back/ Find In/
Forward Path/Lookup Box Lookup Save Replace

$3 : 1824

- ISW‘-.S E1550:: ProfilesT able’E stended Attributes\WithE xpRowSize

Table 2:
Tool Description
- Back (+) - Go to the previous visited entry or category. Click the down arrow to directly select from

your history.

Forward (+) - Go to the next visited entry or category. Click the down arrow to directly select from
your history.

il

Lookup () - Go to the item named in the text box to the left of the tool. If more than one item is found, they
are listed in a results dialog and you should double-click on the desired item or select it and click OK to go to it.

Click the down arrow to set lookup options:

e [extension type] - select the type of extension to search, for example you can search only stereotypes
e Allow wildcard - Enables the use of the characters * to match any string and ? to match any single character.
For example, type is* toretrieve all extensions called is. . ..

e Match case - Search with case sensitivity.

= - Save (+ +) — Save the current resource file. Click the down arrow to save the current re-

source file under a new name.

o Find In Items (+ +) - Search for text in entries.
ag} Replace In Items (+ +) - Search for and replace text in entries.

1 Note

To jump to the definition of a template from a reference in another template (see Templates (Profile) [page
1007) or other extension, place your cursor between the percent signs and press|[r12|. If an extension overrides
another item, right-click it and select Go to super-definition to go to the overriden item.

Customizing and Extending PowerDesigner
12 © 2016 SAP SE or an SAP affiliate company. All rights reserved. PowerDesigner Resource Files

1.3 Editing Resource Files

You can add items in the resource editor by right-click a category or an entry in the tree view.

The following editing options are available:

Table 3:

Edit option Description

New Adds a user-defined entry or category .

Add items... Opens a selection dialog box to allow you select one or more of the predefined metamodel categories
or entries to add to the present node. You cannot edit the names of these items but you can change
their comments and values by selecting their node.

Remove Deletes the selected category or entry.

Restore Comment Restores the default comment for the selected category or entry.

Restore value Restores the default value for the selected entry.

1 Note

You can rename a category or an entry directly from the resource file tree by selecting it and pressing the F2
key.

1.4 Saving Changes

If you make changes to a resource file and then click OK to close the resource editor without having clicked the
Save tool, the changes are saved in memory, the editor is closed and you return to the list of resource files. When
you click Close in the list of resource files, a confirmation box is displayed asking you if you really want to save the
modified resource file. If you click Yes, the changes are saved in the resource file itself. If you click No, the changes
are kept in memory until you close the PowerDesigner session.

The next time you open any model that uses the customized resource file, the model will take modifications into
account. However, if you have previously modified the same options directly in the model, the values in the
resource file do not change these options.

1.5 Sharing and Embedding Resource Files

Resource files can be shared and referenced by multiple models or copied to and embedded in a single model.
Any modifications that you make to a shared resource are available to all models using the resource, while

Customizing and Extending PowerDesigner
PowerDesigner Resource Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 13

modifications to an embedded resource are available only to the model in which it is embedded. Embedded
resource files are saved as part of their model and not as a separate file.

1 Note

You should never modify the original extensions shipped with PowerDesigner. To create a copy of the file to
modify, open the List of Extensions, click the New tool, specify a name for the new file, and then select the .xem
that you want to modify in the Copy from field.

The File Name field displays the location of the resource file you are modifying is defined. This field is empty if the
resource file is embedded.

1.6 Creating and Copying Resource Files

You can create a new resource file in the appropriate resource file list. To create a copy of an existing resource file,
select it in the Copy from field of the New... dialog.

Context

Caution

Since each resource file has a unique id, you should only copy resource files within PowerDesigner, and not in
Windows Explorer.

Procedure

1. Select| Tools » Resources » <Type> 4to open the appropriate resource file list.

2. Click the New tool, enter a name for the new file and select an existing file to copy. Select the <Default
template> item to create a minimally completed resource file.

3. Click OK to create the new resource file, and then specify a filename and click Save to open it in the Resource
Editor.

1 Note

You can create an extension file directly in your model from the List of Extensions. For more information,
see Creating an Extension File [page 19].

Customizing and Extending PowerDesigner
14 © 2016 SAP SE or an SAP affiliate company. All rights reserved. PowerDesigner Resource Files

1.7 Specifying Directories to Search for Resource Files

Use the Path tool in the resource list toolbar to specify directories to search to populate the list. If you plan to
modify the standard resource files or create your own, you must store these files in a directory outside the
PowerDesigner installation directory.

Context

By default, only the directory inside the Program Files folder containing the standard resource files appears in
the list, but PowerDesigner does not allow you to save modifications there, and will propose an alternative location
if you try to do so, adding the selected directory to the list. You can add additional directories as necessary.

1 Note

If you have created or modified resource files inside Program Files before 16.5, when this rule was
introduced, your files may no longer be available as Windows Vista or Windows 7 actually store them in a virtual
mirror at, for example, C: \Users\<username>\AppData\Local\VirtualStore\Program Files\Sybase
\PowerDesigner 16\Resource Files\DBMS. To restore these filesto your lists, optionally move themto a
more convenient path, and add their location to your list using the Path tool.

The first directory in the list is the default location, which is proposed whenever you save a file. The root of the
library belonging to your most recent repository connection is searched recursively before the directories in the
list (see Core Features Guide > Administering PowerDesigner > Deploying an Enterprise Glossary and Library), .

1 Note

In rare cases, when seeking resource files to resolve broken references in models, the directories in the list are
scanned in order, and the first matching instance of the required resource is used.

1.8 Comparing Resource Files

You can select two resource files and compare them to highlight the differences between them.

Procedure

1. Select|r Tools » Resources » <Type> 4to open the appropriate resource file list.

2. Select the first resource file you want to compare in the list, and then click the Compare tool to open a
selection dialog.

The selected file is displayed in the second comparison field.

Customizing and Extending PowerDesigner
PowerDesigner Resource Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 15

3. Select the other resource file to compare in the first comparison field.

If the resource file you want to compare is not in the list, click the Select Path tool and browse to its directory.

Select DBEMS to Compare

DEBRS 2 |S_I,I|:a$e AS Enterprize 12.5.1

|] 4 I Cancel Help

4. Click OK to open the Compare... dialog, which allows you to review all the differences between the files.

For detailed information about this window, see Core Features Guide > Modeling with PowerDesigner >
Comparing and Merging Models.

5. Review the differences and then click Close to close the comparison window and return to the list.

1.9 Merging Resource Files

You can select two resource files of the same kind and merge them. Merge is performed from left to right, the
resource file in the right pane is compared to the resource file in the left pane, differences are highlighted and
merge actions are proposed in the right hand resource file.

Procedure

1. Select | Tools » Resources » <Type> . toopen the appropriate resource file list.

2. Select the resource file in which you want to make merge changes in the list, and then click the Merge tool to
open a selection dialog.

The selected file is displayed in the To field.

3. Select the resource file from which you want to merge in the From field.

If the resource file you want to merge is not in the list, click the Select Path tool and browse to its directory.

Select DBMS to Merge

Tat |S_I,Il:|ase &5 Enterprize 12.5.1

k. I Cancel Help

Customizing and Extending PowerDesigner
16 © 2016 SAP SE or an SAP affiliate company. All rights reserved. PowerDesigner Resource Files

4. Click OK to open the Merge... dialog, which allows you to review all the merge actions before you complete
them.

For detailed information about this window, see Core Features Guide > Modeling with PowerDesigner >
Comparing and Merging Models.

5. Select or reject the proposed merge actions as necessary, and then click OK to perform the merge.

Customizing and Extending PowerDesigner
PowerDesigner Resource Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

17

2 Extension Files

Extensions files (* . xem) allow you to customize and extend the PowerDesigner metamodel to support your exact
modeling needs. You can define additional properties for existing objects or specify entirely new types of objects,
modify the PowerDesigner interface (reorganizing and adding property sheet tabs, Toolbox tools and menu
items), and define additional generation targets and options.

Extension files have an . xem extension and are located in <install dir>/Resource Files/Extended

Model Definitions.

Lists of extension files by model type are available by selecting |lF Tools # Resources # Extensions » <model

type> 4. For information about the tools available in resource file lists, see PowerDesigner Resource Files [page
9].

1 Note

Extensions, such as the Excel Import extension, which can be attached to any model type, are available in the
list at |l* Tools ¥ Resources ¥ Extensions ¥ All Model Types 3.

Each extension file contains two first-level categories:

e Generation - used to develop or complement the default PowerDesigner object generation (for BPM, OOM,
and XSM models) or for separate generation. For more information, see Generation Category [page 132].
e Profile - used for extending the metaclasses in the PowerDesigner metamodel. You can:
o Create or sub-classify new kinds of objects:
o Metaclasses — drawn from the metamodel as a basis for extension.
o Stereotypes [for metaclasses and stereotypes only] — sub-classify metaclasses by stereotype.
o Criteria — sub-classify metaclasses by evaluating conditions.

[}

Add new properties and collections to objects and display them:
o Extended attributes - to add metadata.
o Extended collections and compositions — to enable manual linking between objects.
o Calculated collections — to automate linking between objects.
o Dependency matrices — to show dependencies between two types of objects.
o Forms —to modify property sheets and add custom dialogs.
o Custom symbols - to change the appearance of objects in diagrams.

o

Add constraints and validation rules to objects:
o Custom checks - to test the validity of your models on demand
o Event handlers — to perform validation or invoke methods automatically.
o Execute commands on objects:
o Methods - VBScripts to be invoked by menus or form buttons.
o Menus [for metaclasses and stereotypes only] — to add commands to PowerDesigner menus.
o Generate objects in new ways:
o Templates — to extract text from object properties.
o Generated Files - to assemble templates for preview and generation of files
o Transformations — to automate changes to objects at generation or on demand.

Customizing and Extending PowerDesigner
18 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

o Map correspondences between different metamodels:

o Object generations - to define mappings between different modules in the PowerDesigner metamodel
for model-to-model generation.

o XML imports - to define mappings between an XML schema and a PowerDesigner module to import
XML files as models.

1 Note

Since you can attach several resource files to a model (for example, a target language and one or more
extension files) you can create conflicts, where multiple extensions with identical names (for example, two
different stereotype definitions) are defined on the same metaclass in separate resource files. In case of such
conflicts, the extension file extension usually prevails. When two XEMs are in conflict, priority is given to the one
highest in the List of Extensions.

2.1 Creating an Extension File

You can create an extension file directly in your model or from the appropriate list of extension files.

Context

1 Note

Extensions, such as the Excel Import extension, which can be attached to any model type, can only be created
from the All Model Types extension list. For information about creating an extension file from a list of extension
files, see Creating and Copying Resource Files [page 14].

Procedure

1. Open your model, and then select | Model » Extensions 3 to open the List of Extensions.
2. Click the Add a Row tool and enter a name for the new extension file.

3. Click the Properties tool to open the new extension file in the Resource Editor, and create any appropriate
extensions.

4. When you have finished, click OK to save your changes and return to the List of Extensions.
The new XEM is initially embedded in your model, and cannot be shared with any other model. For information

about exporting your extensions and making them available for sharing, see Exporting an Embedded
Extension File for Sharing [page 21].

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 19

2.2 Attaching Extensions to a Model

Extensions can be stored in * . xem files that you can attach to one or more models. You can attach one or more
extension files to a model at creation time by clicking the Select Extensions button on the New Model dialog. You
can subsequently attach extension files to your model at any time from the List of Extensions.

Procedure

1. Select| Model » Extensions Jto open the List of Extensions, which contains extensions attached to the
model.

2. Click the Attach an Extension tool to open the Select Extensions dialog.

3. Review the different sorts of extensions available by clicking the sub-tabs and select one or more to attach to
your model.

By default, PowerDesigner creates a link in the model to the specified file. To copy the contents of the
extension file and save it in your model file, click the Embed Resource in Model button in the toolbar.
Embedding a file in this way enables you to make changes specific to your model without affecting any other
models that reference the shared resource.

4. Click OK to return to the List of Extensions.

20

i List of Extensions _ O] x|

B EE % Ll XY RS-

M ame Code =l
1 Drata Movernent |3 D atakd overmnent| 0 *—--—-.k
2 PowerBuilder POWERBUILDER N
= |ASE Prosy Tables ASEFromyT ables ‘\ Attached
‘\ o
Embedded <

Fl#|4|4[$|2]4] 2]
k. I Cancel Apply Help |

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Extension files listed in grey are attached to the model, while those in black are embedded in the model.

Customizing and Extending PowerDesigner
Extension Files

1 Note

If you embed an extension file in the model, the name and code of the extension may be modified in order
to make it respect the naming conventions of the Other Objects category in the Model Options dialog.

2.3 Exporting an Embedded Extension File for Sharing

If you export an XEM created in a model, it becomes available in the List of Extensions, and can be shared with
other models. When you export an XEM, the original remains embedded in the model.

Procedure

1. Select|r Model » Extensions Jto open the List of Extensions, which contains extensions attached to the
model.

2. Select an embedded extension in the list and click the Export an Extension tool.

3. Enter aname and select a directory to which to save the extension file and click Save.

1 Note

For the extension to be available for attaching to other models, you must save it to a directory that is listed
by the Path tool in the appropriate extension list (see Specifying Directories to Search for Resource Files
[page 15]).

2.4 Extension File Properties

All extension files have the same basic category structure.

The root node of each file contains the following properties:

Table 4:
Property Description
Name / Code Specify the name and code of the extension file, which must be unique in a model.
File Name [read-only] Specifies the path to the extension file. If the XEM has been copied to your model, this field
is empty.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 21

Property

Family / Subfamily

Description

Restricts the availability of the XEM to a particular target family and subfamily. For example, when an
XEM has the family Java, it is available only for use with targets in the Java object language family. EJB
2.0 is a sub-family of Java.

Auto-attach

Specifies that the XEM will be automatically attached to new models with a target belonging to the
specified family.

Category

Groups XEMs by type for generation and in the Select Extensions dialog. Extensions having the same
category cannot be generated simultaneously. If you do not specify a category, the XEM is displayed
in the General Purpose category and is treated as a generation target.

Enable Trace Mode

Lets you preview the templates used during generation (see Templates (Profile) [page 100]). Before
starting the generation, click the Preview page of the relevant object, and click the Refresh tool to dis-
play the templates.

When you double-click on a trace line from the Preview page, the Resource Editor opens to the corre-
sponding template definition.

Complement lan-
guage generation

[BPM, OOM, XSM extensions] Specifies that any generated files (seeGenerated Files (Profile) [page

101]) that you define in the extension will be generated when you select | Language * Generate... 3
in addition to the files that are generated by default. If you give a generated file in your extension the
same name as one defined in the language definition file (see Object, Process, and XML Language Def-
inition Files [page 127]), then the file in your extension will override the one in the language definition
file.

To enable an independent generation of files, you must deselect this option, select the Enable
selection in file generation option for at least one metaclass (see Metaclasses (Profile) [page 39]),
and add at least one generated file to the metaclass (see Generating Your Files in a Standard or Ex-
tended Generation [page 105]).

1 Note

SAP® PowerBuilder® does not support XEMs for complementary generation.

Comment

Provides a descriptive comment for the XEM.

The following categories are also available:

e Generation - Contains Generation commands, options, and tasks to define and activate a generation process
(see Generation Category [page 132]).

e Transformation Profile - Groups transformations for application at model generation time or on demand (see
Transformations (Profile) [page 107]).

Customizing and Extending PowerDesigner

22 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

2.5 Example: Adding a New Attribute from a Property Sheet

In this example, we will quickly add a new attribute directly from the property sheet of an object. PowerDesigner
will manage the creation of the extension file and creation of all the necessary extensions.

Procedure

1. Click on the Property Sheet Menu button at the bottom-left of the property sheet, to the right of the More/
Less button, and select New Attribute.

2. Inthe New Attribute dialog, enter Latency in the Name field, select String for the data type.

3. Click the ellipsis button to the right of the List of values field, enter the following list of predefined values, and
then click OK:

o Batch
o Real-Time
o Scheduled

4. [optional] Select scheduled in the Default value field.

5. [optional] Click Next to specify the property sheet page where you want the new attribute to appear. Here,
we'll leave the default, so its inserted on the General tab.

Mew Attribute |

Mame: ILatenu:_l,l

Comment: ﬂ

=

Drata ype: I [Strirg] j
Default value: IScheduIed j

List of walues: IBatch;HeaI-Time;S cheduled _I Complete v
[Open Rezource Editor on Finish Create Another. . |

< Back I Hest » I Finizh Cancel Help |

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 23

2.6 Example: Creating Robustness Diagram Extensions

In this example, we will recreate the Robustness extension file delivered with PowerDesigner to extend the OOM
communication diagram to enable robustness analysis. Robustness diagrams sit between use case and sequence
diagram analysis, and allow you to bridge the gap between what the system has to do, and how it is actually going
to accomplish it.

Context

In order to support the robustness diagram, we will need to define new objects by applying stereotypes to a
metaclass, specify custom tools and symbols for them, as well as defining custom checks for instance links and
producing a file to output a description of messages exchanged between objects.

Creating the robustness extensions will enable us to verify use cases like the following, which represents a basic
Web transaction:

Eustu:-mer\

Internet Browsear

aaaocasskr SeaooesERr

Cratabaze Senrer

Application Sernver

A customer wants to know the value of his stocks in order to decide to sell or not, and sends a stock value query
from his Internet Browser, which is transferred from his browser to the database server via the application server.

The first step in defining extensions, is to create an extension file (.xem) to keep them in:

Procedure

1. Create or open an OOM and select [Model » Extensions 3 to open the list of extensions attached to the
model.

2. Click the Add a Row tool to create a new extension file, and then click the Properties tool to open it in the
Resource Editor.

Customizing and Extending PowerDesigner
24 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

3. Enter Robustness Analysis Extensions inthe Name field, and clear the Complement language
generation check box, as these extensions do not belong to any object language family and will not be used to
complement any object language generation.

4. Expand the Profile category, in which we will create the extensions:

Ei| Extension Properties (My0OM) 1Ol =]
General |
- - IHobustness Ainalysis Extensions A d- TS
L)_(] Robustness Analysis Extensions - -
@ Gereration Mame: IHobustness Analysiz Extensions _=I
E@ Prafile Code: |F|obustness fnalysis Extensions IT
A7) Shared
File name: I
Farnily: | Ao attach [
Subfamily: I
Categary: I
Generation
[~ Enable race mode [iComplement language generatior: ‘
Camrment:
3
=l

(0] 4 I Cancel | Apply | Help |

For detailed information about creating extension files, see Creating an Extension File [page 19].

2.6.1 Creating New Types of Objects with Stereotypes

To implement robustness analysis in PowerDesigner, we need to create three new types of objects (boundary,
entity, and control objects), which we will define in the Profile category by extending the UMLObject metaclass
through stereotypes.

Procedure

1. Right-click the Profile category and select Add Metaclasses to open the Metaclass Selection dialog.
2. Select UMLObject on the PAOOM tab and click OK to add this metaclass to the extension file.

1 Note

Click the Find in Metamodel Objects Help tool to the right of the Name field (or click + [F1]) to obtain
information about this metaclass and see where it is situated in the PowerDesigner metamodel.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 25

Right-click the UMLObject category and select [New » Stereotype 3 to create a stereotype to extend this

metaclass.

Enter Boundary in the Name field, and Boundary objects are used by actors when

communicating with the system; they can be windows,
in the Comment field.

screens, dialog boxes or menus.

Select the Use as metaclass check box to promote the object type in the interface so that it has its own object

list and Browser category.

Click the Select Icon tool to open the PowerDesigner image library dialog, select the Search Images tab, enter

boundary in the Search for field, and click the Search button.

Select the Boundary . cur image in the results, and click OK to assign it to represent boundary objects in the
Browser and other interface elements. Click the Toolbox custom tool check box to create a tool with the same

icon for creating the new object in the Toolbox.

Repeat these steps to create the following stereotypes and icons:

Table 5:
Stereotype Comment Image file
Entity Entity objects represent stored data like a database, database tables, or | entity.cur
any kind of transient object such as a search result.
Control Control objects are used to control boundary and entity objects, and rep- | control.cur
resent transfer of information.

] Extension Properties (MyOOM)

Gereral |

=101 x|

- - IHobustness Analyzis Extenzions::Profile\UMLObject\StereatypesiCaontral

|- T

Robustness Analysis Extensions

- G |
@ Generation S |
EEJ GLE Mame: IEontroI
-2 Shared
BB UMLObject Labet |
=143 Sterectypes
@ o Baent | Nones

Boundary

=] [or]

[Absttact W Use as metaclass [Mo symbol

<Curzar click test area:

lcon; 6 "F Falette custom toal

Flural label: |Enntrnl Ohjects
Default name: I
Caormment:
Contral objects are used to contral boundary and entity objects, and represent transfer of
infarmation.

0K I Cancel Apply Help

9. Click Apply to save your changes before continuing.

26

For detailed information about creating stereotypes, see Stereotypes (Profile) [page 43].

Customizing and Extending PowerDesigner

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Extension Files

2.6.2 Specifying Custom Symbols for Robustness Objects

We will specify diagram symbols for each of our new robustness diagram objects by adding custom symbols to
our new stereotypes.

Procedure

1. Right-click Boundary stereotype and select s New » Custom Symbol 3 to create a custom symbol under the
stereotype.
2. Click the Modify button to open the Symbol Format dialog, and select the Custom Shape tab.

3. Select the Enable custom shape check box, and select Boundary Object in the Shape name list.

Symbol Format | x|

Size I Lire St_l,llel Fil I Shaduwl Font Custom Shape | Eu:untentl

—Iv apple custom shape to symbalz
¥ Allow users to modify symbol custom shape

—Iv Enable custom shape

Shape tupe: IF'redeflned Symbol v | Browse.. |

Shape name:

Display name: ™ Bottom ¢ Center { Mone

E] & O

Ahc

®

k. I Cancel Apply Help

— Preview

4. Click OK to complete the definition of the custom symbol and return to the Resource Editor.

5. Repeat these steps for the other stereotypes:

Table 6:

Stereotype Shape Name

Entity Entity Object

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 27

Stereotype Shape Name

Control Control Object

] Extension Properties (MyOOM) ;lglﬁl
General |
- - IHobustness Analyziz Etenzions:: Profile \UMLObject\Steraotypes\E ity Cuztomn Symbol j Ck - = - F-"Sf “f,g

Robustness Analysis Extensions

{3 Generation A
B3 Profile Comment: -
I3) Shared
=-E UMLObject
B0 Sterectypes 4|
E‘ Bnugdar_l,l o Type: Fredefined Symbol ~ Mame: Entity Object
El "E]n“glsmm LA — Default size (pixel)

‘f] Custom Spmbal Width: |B4 Height: |84

E| Entity
0K I

) Custam Symbol - Preview

Default |

odify... |

Cancel Ay | Help |

6. Click Apply to save your changes.

For detailed information about creating custom symbols, see Custom Symbols (Profile) [page 84].

2.6.3 Example: Creating Custom Checks on Instance Links

We will now create three custom checks on the instance links that will connect the various robustness objects.
These checks, which are written in VB, do not prevent users from creating diagrams not supported by the
robustness methodology, but define rules that will be verified when you check your model.

Procedure

1. Right-click the Profile category, select Add Metaclasses to open the Metaclass Selection dialog, select
InstanceLink onthe PAOOM tab and click OK to add it to the extension file.

2. Right-click the InstanceLink category and select |r New j» Custom Check Jto create a check under the
metaclass.

Customizing and Extending PowerDesigner

28 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

3. Enter the following values for the properties on the General tab:

Table 7:

Field VEIT)

Name Incorrect Actor Collaboration

Comment This check verifies if actors are linked to boundary objects.
Linking actors to control or entity objects is not allowed in the
robustness analysis.

Help message This check ensures that actors only communicate with boundary
objects.

Output message |The following instance links are incorrect:

Default severity Error

Execute the check | [selected]
by default

4. Select the Check Script tab and enter the following script in the text field:

Function %Check% (1link)
' Default return is True
%Check% = True

' The object must be an instance link

If link is Nothing then
Exit Function

End if

If not link.IsKindOf (PdOOM.cls InstancelLink) then
Exit Function

End If

' Retrieve the link extremities
Dim src, dst

Set src = link.ObjectA

Set dst = link.ObjectB

' Source is an Actor
' Call CompareObjectKind () global function defined in Global Script pane
If CompareObjectKind(src, PdOOM.Cls Actor) Then
' Check if destination is an UML Object with "Boundary" Stereotype
If not CompareStereotype (dst, PdOOM.Cls UMLObject, "Boundary") Then
%Check% = False
End If
ElseIf CompareObjectKind(dst, PdOOM.Cls Actor) Then
' Check if source is an UML Object with "Boundary" Stereotype
If not CompareStereotype (src, PdOOM.Cls UMLObject, "Boundary") Then
%Check% = False
End If
End If
End Function

1 Note

For more information on VBS, see Scripting PowerDesigner [page 328].

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

5. Select the Global Script tab (where you store functions and static attributes that may be reused among
different functions) and enter the following script in the text field:

This global function check if an object is of given kind
or is a shortcut of an object of given kind

Function CompareObjectKind (Obj, Kind)

' Default return is false

CompareObjectKind = False

v

' Check object
If Obj is Nothing Then
Exit Function
End If
' Shortcut specific case, ask to it's target object
If Obj.IsShortcut() Then
CompareObjectKind = CompareObjectKind (Obj.TargetObject, Kind)
Exit Function
End If
If Obj.IsKindOf (Kind) Then
' Correct object kind
CompareObjectKind = True
End If
End Function
' This global function check if an object is of given kind
and compare it's stereotype value
Function CompareStereotype (Obj, Kind, Value)
' Default return is false
CompareStereotype = False

v

' Check object
If Obj is Nothing then
Exit Function
End If
if (not Obj.IsShortcut() and not Obj.HasAttribute ("Stereotype")) Then
Exit Function
End If
' Shortcut specific case, ask to it's target object
If Obj.IsShortcut() Then
CompareStereotype = CompareStereotype (Obj.TargetObject, Kind, Value)
Exit Function
End If
If Obj.IsKindOf (Kind) Then
' Correct object kind
If Obj.Stereotype = Value Then
' Correct Stereotype value
CompareStereotype = True
End If
End If
End Function
' This global function copy the standard attribute
from source to target
Function Copy (src, trgt)

trgt.name = src.name

trgt.code = src.code

trgt.comment = src.comment
trgt.description = src.description
trgt.annotation = src.annotation
Dim b, d

for each b in src.AttachedRules
trgt.AttachedRules.insert -1,b
next
for each d in src.RelatedDiagrams
trgt.RelatedDiagrams.insert -1,d
next
output " "
output trgt.Classname & " " & trgt.name & " has been created."
output " "

Customizing and Extending PowerDesigner
30 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

End Function

6. Repeat these steps to create a second check by entering the following values:

Table 8:

Field

Name

Value

Incorrect Boundary to Boundary Link

Help message

This check ensures that an instance link is not defined between

two boundary objects.

Output message

The following links between boundary objects are incorrect:

Default severity Error

Execute the check by [selected]

default

Check Script Function %Check$% (link)

' Default return is True
$Check% = True

' The object must be an instance link

If link is Nothing then
Exit Function

End if

If not link.IsKindOf (PdOOM.cls InstanceLink) then
Exit Function

End If

' Retrieve the link extremities
Dim src, dst

Set src = link.ObjectA

Set dst = link.ObjectB

' Error if both extremities are 'Boundary' objects
If CompareStereotype(src, PdOOM.Cls UMLObject, "Boundary")
Then
If CompareStereotype (dst, PdOOM.Cls UMLObject,
"Boundary") Then
%Check% = False
End If
End If
End Function

7. Repeat these steps to create a third check by entering the following values:

Table O:

Field Value

Name Incorrect Entity Access

Help Message This check ensures that entity objects are accessed only from
control objects.

Output Message The following links are incorrect:

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

32

Field Value

Default Severity Error

Execute the check by [selected]

default

Check Script Function %Check% (1ink)

' Default return is True
%Check% = True

' The object must be an instance link

If link is Nothing then
Exit Function

End if

If not link.IsKindOf (PdOOM.cls InstanceLink) then
Exit Function

End If

' Retrieve the link extremities

Dim src, dst

Set src = link.ObjectA

Set dst = link.ObjectB

' Source is and UML Object with "Entity" stereotype?
' Call CompareStereotype () global function defined in
Global Script pane
If CompareStereotype (src, PdOOM.Cls UMLObject, "Entity")
Then
' Check if destination is an UML Object with "Control"
Stereotype
If not CompareStereotype (dst, PdOOM.Cls UMLObject,
"Control") Then
%Check% = False
End If
ElseIf CompareStereotype (dst, PdOOM.Cls UMLObject,
"Entity") Then
' Check if source is an UML Object with "Control"
Stereotype
If not CompareStereotype (src, PdOOM.Cls UMLObject,
"Control") Then
%Check% = False
End If
End If
End Function

Customizing and Extending PowerDesigner

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

ﬁ] Extension Properties (MyOOM)

General |

=10l x|

B-H- IHobustness.-’-‘maI_l,lsis Extensions:: ProfilehInstancelink Custom Checksbincomect Entity Access

S a-d- T

Robusthess Analysis Extensions
L) Generation
L) Profile
{0 Shared
= InstanceLink
' E@ Custom Checks

L e Q Incomect Entity Access
=& UMLObiect
B3 Stereatvpes
=-[=2] Boundary
m Custom Spmbol
E---ﬁl Control
- Ll Custom Spmhbol
=1-[#] Entity

----- 7 Custom Symbel

[Incomect Actor Collaboration
Q Incomect Boundary to Boundan,

General | Check Secript | Autcfiz Script | Global Seript

Harne:

Camment:

[
[

Help message: [This check ensures that entity objects are accesszed only from control objects.

Output message: IThe following links are incomect:

Default severty . % Epor - ¢ Warning
V¥ Esecute the check by default
[Enable automatic comection

[" | Execute the automatic comection by default

o]

Apply Help

8. Click Apply to save your changes before continuing.

For detailed information about creating custom checks, see Custom Checks (Profile) [page 86].

2.6.4 Example: Defining Templates to Extract Message

Descriptions

We are going to generate a textual description of the messages in the diagram, giving for each message, the
names of the sender, message, and receiver. To do so, we will need to define PowerDesigner Generation Template
Language (GTL) templates to extract the information and a generated file to contain and display the extracted

information.

Context

To generate this textual description, we will need to extract information from the Message metaclass (to extract

the message sequence number, name, sender, and receiver) and the CommunicationDiagram (to gather all the
messages from each diagram and sort them)

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

33

Procedure

1. Right-click the Profile category, select Add Metaclasses to open the Metaclass Selection dialog, select
CommunicationDiagramand Message on the PAOOM tab and click OK to add them to the extension file.

Right-click the Message category and select | New » Template J to create a template under the metaclass.

3. Enter description inthe Name field, and then enter the following GTL code in the text area:

.set value(tabs, "", new)
.foreach part ($SequenceNumbers, '.')

o)

.set _value(_ tabs, " % _tabs%")
.next
% tabs%%SequenceNumber?%) S$Sender.ShortDescription% sends message "%Name3" to
$Receiver.ShortDescription$%

The first line of the template initializes the tabs variable, and the foreach part macro calculates an
appropriate amount of indentation by looping through each sequence number, and adding 3 spaces whenever
adotis found. The last line uses this variable to indent, format, and display information extracted for each
message.

4. Right-click the CommunicationbDiagram category and select | New » Template 3 to create a template
under the metaclass.

5. Enter compareCbMsgSymbols in the Name field, and then enter the following GTL code in the text area:
.bool (%Iteml.Object.SequenceNumber$ >= $Item2.0bject.SequenceNumber%)

This template resolves to a boolean value to determine if one message number is greater than another, and
the result will be used in a second template.

6. Right-click the CommunicationDiagram category and select | New » Template 3to create a second
template, enter description in the Name field, and then enter the following GTL code in the text area:

Collaboration Scenario $Name%:
\n
.foreach item(Symbols,,, %ObjectType% == CollaborationMessageSymbol,
scompareCbMsgSymbols%)
%0bject.description%
.next (\n)

The first line of this template generate the title of the scenario from the name of the communication diagram.
Thenthe . foreach itemmacro loops oneach message symbol, and calls on the other templates to format
and output the message information.

Customizing and Extending PowerDesigner
34 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

ﬁ] Extension Properties (MyOOM) ;lglll

General |

B-H- IHobustness.-’-‘maI_l,lsis E stensions:: ProfiletCommunicationDtiagram' T emplatest description j Q- - F-ﬁf “2}

L)..(] Robustnes: Analpsis Extensions = Name: o
L33 Gereration HMarne: escription

E@ Profile Camment:

EI CommunicationDiagram

E@ Templates LI
| compareChMzgSymbols ;
3 o =l ™ 3 =

| %] 'description S-5-d 3 | & E3 L']i| o |n}'=-' % Ln5 Col10

=%y Instancelink

{h Custom Checkes Conmunication Scenario $Mamek: ;I
i1
o % :ncorrec:ﬁéclnrdcolliboar. foreach_itemidymbols,,, %0bjectType: == ComnmunicationMessagedy
oo neorect Boundary to & .
: (0bject.descriptiont
[t Incomect Entity Access .nexi(\n) F
B Message b
E@ Templates

- @ description
E-E UMLObject

=3 Sterentypes e
I 1 [l DmsimAd e | _ILI 1 | I _PI_I
4 3

QK I Carncel Apply | Help |

7. Click Apply to save your changes before continuing.

For detailed information about templates and GTL, see Templates (Profile) [page 100] and Customizing
Generation with GTL [page 268].

2.6.5 Example: Creating a Generated File for the Message
Information

Having created templates to extract information about the messages in the model, we need to create a generated
file to contain and display them on the Preview tab of the diagram property sheet. We will define the file on the
BasePackage metaclass, which is the common class for all packages and models, and will have it loop through all
the communication diagrams in the model to evaluate the template description defined on the

CommunicationDiagram metaclass.

Procedure

1. Right-click the Profile category, select Add Metaclasses to open the Metaclass Selection dialog, click the
Modify Metaclass Filter tool, select Show Abstract Modeling Metaclasses, and click the PdCommon
tab.

2. Select BasePackage and click OK to add it to the extension file.

3. Right-click the BasePackage category and select | New » Generated File 3 to create a file under the
metaclass.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 35

4. Enter the following values for the file properties:

Table 10:

Field VEINT)

Name Communications Textual Descriptions
File name %$Name% Communication Description.txt
Encoding ANST

Use package hier- | [unselected]
archy as file path

5. Enter the following code in the text box:

.foreach item(CollaborationDiagrams)

%description%
.next (\n\n)

] Extension Properties (MyOOM)

Gereral |

=10l x|

e e IHobustness Analyziz Extensions: Profile\B asePackage\G enerated Files\Communications TextuaIDescripj ‘% - = - ﬁ-‘.f 32}

Robustness Analysis Extensions -
=i | Mame:

E:l Generation
=) Profile File narne: IZNameZ Caommunication Description, bt Tupe: I_t:-ct
A3 Shared
-3 BasePackage Encoding: I.-’-\NSI [Active Code Page]

B3 Generated Files
- Communications Textua

=B8] CommuricationDiagram

EE:I Templates

- a compareChbd sq5 ymbols

Comment;

EI--- InstanceLink,
=2 Custom Checks

¥ Use package hierarchy as file path

A &B-F-dIR| 4 aBR][9 0| 32@ LnlColl

& Ll

: Q Incarmect Actar Collabor,
[Incomect Boundary to B
Ll Incomect Entity Access
[+ Meszage

EC3 Templates
P (8™ Adecrinbioss i (I I
| _>l_I

1

foreach_item(CollaborationDiadgrans)
Ydescriptiont
.next(inin)

L

0K I Cancel Apply | Help |

6. Click Apply to save your changes, and then OK to close the resource editor.

7. Click OK to close the List of Extensions.

For detailed information about creating generated files, see Generated Files (Profile) [page 101].

36 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

2.6.6 Example: Testing the Robustness Extensions

To test the extensions we have created, we will create a small robustness diagram to analyze our use case.

Procedure

1. Right-click your model node in the Browser, and select | New » Communication Diagram 3.

In addition to the standard Toolbox, a custom toolbox is provided with tools you have defined to create
boundary, control, and entity objects.

2. Dragthe Customer actor from the Actors category in the Browser into the diagram to create a shortcut. Then
create one each of the boundary, control and entity objects, and name them Internet Browser,
Application Server,andDatabase Server respectively.

3. Use the Instance Link tool in the standard Toolbox to connect the Customer to the Internet Browser tothe

Application Server,tothe Database Server.

4. Create the following messages on the Messages tabs of the instance links property sheets:

Table 11:
Direction ’ Message name Sequence number
Customer - Internet Browser Stock value query 1
Internet Browser - Application Server Ask value to app server 2
Application Server - Database Server Ask value to db 3
Database Server - Application Server Return value from db 4
Application Server - Internet Browser Return value from app server 5
Internet Browser - Customer Return value 6
Stock Walue Queny
Customer

=<Contral==
Application Senver

Return wvalue from h

Return walue from app sewer

Ackovalue to app Een.r;(

Asbiwvalue to db

.

Return Ualue\

=<Boundan:> =< Entity=»
Internet Browser Labatase Server

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 37

5. Select | Tools » Check Model 3 to display the Check Model Parameters dialog box, in which the custom
checks we have created appear in the Instance Link category:

Check Model Parameters - 10Ol x|

Optians | Selection I

- G- | 0 & E

-2 Package
w5 Actar
wl5) Use Caze
1) Object
El Meszzage
=05 Instance Link
%, Redundant instance links
WEd Incomect Actor Collaboration
3 Incomect Boundary to Boundary Link

e Incomect Entity Access

] I Cancel Apply Help

Click OK to test the validity of the instance links we have created.

6. Right-click the model node in the Browser and select Properties to open the model property sheet. Click the
Preview tab to review messages sent for our use case:

Customizing and Extending PowerDesigner
38 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

=y Model Properties - MyDOM2 {(MyDOMZ2) | -0l x|

Generall .&nnotatinnsl W’SDLl Mates | Estended dttibutes Presiew |

S-B-d3A| Xl 20| A0 wi.cal

IColla.borat.ion Joenario ftock Query Robustness:

1i
2]
3
4]
3]
&l

E\Robus‘tness Extensions Communications Textual Descriptions f” A | |

Actor 'Customer' sends message "Stock Walue Ouery™ to Boundary 'Internet Browser!'
Boundary 'Internet Browser' sends message "isk walue to app server” to Control 'Appl
Control 'Application 3erwver' sends message "4sk walue to db™ to Entity 'Dabatase 3er
Entity 'Dabatase Zerwer' sends message "FEeturn walue from db™ to Control 'Applicatio:
Control 'Application Serwer' sends message "Return walue from app serwer”™ to Boundar
Boundary 'Internet Browser' sends message "Eeturn walue™ to Aotor 'Customer’

Mare »» | = Q. I Cancel Ay I Help

2.7 Metaclasses (Profile)

Metaclasses are defined in the PowerDesigner metamodel and provide the basis for your extensions. You add a
metaclass to the Profile category when you want to extend it in some way by modifying its behavior, adding new

properties, changing its property sheet or symbol, or even excluding it from your models.

Context

You can either make extensions to an existing type of object or create an entirely new kind of modeling object by
adding the ExtendedObject, ExtendedSubObject or ExtendedLink metaclass (see Extended Objects, Sub-

Objects, and Links (Profile) [page 427).

In the following example, the FederationController is an entirely new type of object created by adding the
ExtendedObject metaclass and defining a stereotype on it. Various specializations of the Table metaclass are

defined through criteria and stereotypes:

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

39

Table 12:

=-[X EdendedObject
-0 Stereotypes
: -] FederationController
-3 Edended Attibutes
uﬂ Extended Collections
= Table
B@ Criteria
. Bl SecureTable
E@ Criteria
| [E-I7E Replicated
B@ Extended Aftributes
.. ReplicationPath
E@ Exdended Aftributes
Y ‘E EncryptionHey
E@ Extended Attributes
i3 SecurityLevel
E@ Stereotypes
EJ-[##] FederatedTable
£ Edended Attributes
i3] Extemallogin
E-C7) Stereatypes
£l Priority Table
E-C3) Edended Attributes
(3] Availability

Procedure

Extensions are inherited, so that any extensions made to a metaclass are available to its

stereotyped children, and those that are subject to criteria. The various extended attrib-

utes defined under the table metaclass will be available to table instances according to

the following rules:

SecurityLevel - All tables.

Replicated criteria evaluate to true.

PriorityTable stereotype.

EncryptionKey - Tables for which the SecureTable criterion evaluates to

ReplicationPath - Tables for which both the SecureTable and

ExternalLogin - Tables bearing either the FederatedTable or

Availability - Tables bearing the PriorityTable stereotype.

For example, a table bearing the FederatedTable stereotype, and for which the

SecureTable criteria evaluates to true, would display the SecurityLevel,

EncryptionKey, and ExternalLogin attributes, while a table bearing the

PriorityTable stereotype, and for which both the SecureTable and

Replicated criteria evaluate to true, would display these attributes and, additionally,

the ReplicationPathand Availability attributes.

1. Right-click the Profile category and select Add Metaclasses:

2. Select one or more metaclasses to add to the profile. The sub-tabs list metaclasses belonging to the present
module (for example, the OOM), and standard metaclasses belonging to the PdCommon module.

i Metaclazs Selection

B - G~ G~

ki etaclazs | Parent -
18 sction M amedObject
LB activity Bazedctivity —
1B actor Behaviorald amedObject
18 association Bazedzzociation
wIB sttibute Conztrainedt amedJbject
[WIE Claz: Clazzifier
B Component M amedObject
1B Componentinstance |nztance -
0 [\ Pacom APdComman 7

Objectz] selected: 3734

o]

Cancel | Help |

40 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

[optional] Use the Modify Metaclass Filter tool to display:

o

o

o

All metaclasses

Concrete metaclasses - for object types that can be created in a model, such as Class or Interface.

Abstract metaclasses -which are never instantiated but are used to define common extensions. For
example, add the Classifier metaclass to your profile to define extensions that will be inherited by both

classes and interfaces.

1 Note

For information about viewing and navigating among metaclasses in the metamodel, see The
PowerDesigner Public Metamodel [page 366].

3. Click OK to add the selected metaclasses to your profile:

F D0BMS Properties (For All Models) i

General | Trigger Templatesl Trigger Template Itemsl Procedure Templates'

=10l x|

- - |5_I,Ibase.-’-'-.5 Arywhere 3:ProfilehBuginessRule

Ja-d- T

)| Svbase &5 Anywhere 9
A-107) General

F-IC) Script

1L Profile

{a Shared

|, BusinessRule

- J Database

B2 Index

F-6% Procedure

= Table

=) Criteria

. -0 15T emporaryT able
{a Event Handlers
F-C Extended Attributes
-3 Forms

-1 Tablespace

[~ W' ebl peration

- WwebService

M are: |EusinessF| ule

Parent: INamedEII:uiect

G =]

Code naming conyvention: |<N|:|ne>

llegal characters: |

[™ Enable selection in file generation
[™ Exclude from madel

Carnrment:

o]

Cancel

Apply |

4. [optional] Enter the following properties as appropriate:

Table 13:

Property

Description

Name

the Metamodel Objects Help for the metaclass.

[read-only] Specifies the name of the metaclass. Click the button to the right of this field to open

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 41

Property

Parent

Description

[read-only] Specifies the parent of the metaclass. Click the button to the right of this field to go to
the parent. If the parent is not present in the profile, a message invites you to add it.

Code naming conven-
tion

[concrete metaclasses in target files] Specifies the default format to initialize the name to code
conversion script for instances of the metaclass. The following formats are available:

o firstLowerWord - First wordin lowercase, then other first letters of other words in up-
percase

o FirstUpperChar - First character of all words in uppercase

© lower_case - Allwords in lowercase and separated by an underscore

© UPPER_CASE - All words in uppercase and separated by an underscore

For more information on conversion scripts and naming conventions, see Core Features Guide >
Modeling with PowerDesigner > Objects > Naming Conventions.

Illegal characters

[concrete metaclasses in target files] Specifies a list of illegal characters that may not be used in
code generation for the metaclass. The list must be placed between double quotes, for example:

"/!=<>nul () "

When working with an OOM, this object-specific list overrides any values specified in the
IllegalChar property for the object language (see Settings Category: Object Language [page
131D).

Enable selection in file
generation

Specifies that instances of the metaclass can be selected to generate files from on the Selection
tab of the Generation dialog in an extended generation (see Generating Your Files in a Standard
or Extended Generation [page 105]).

Exclude from model

[concrete metaclasses only] Prevents the creation of instances of the metaclass and removes all
references to the metaclass from the menus, Toolbox, property sheets and so on, to simplify the
interface. For example, if you do not use business rules, select this check box for the
BusinessRule metaclass to hide them in your models.

When several resource files are attached to a model, the metaclass is excluded if at least one file
excludes it and the others do not explicitly enable it. For models that already have instances of
this metaclass, the objects will be preserved but it will not be possible to create new ones.

Comment

Documents the reason for the presence of the metaclass in this profile.

2.7.1 Extended Objects, Sub-Objects, and Links (Profile)

Extended objects, sub-objects, and links are special metaclasses that are designed to allow you to add completely
new types of objects to your models, rather than basing them on existing PowerDesigner objects. These objects
do not appear, by default, in models other than the free model unless you add them to an extension or other

resource file.

Customizing and Extending PowerDesigner

42 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Context

e [Extended objects — define new types of objects that can be created anywhere.

e [Extended sub-objects — define new types of child objects that can only be created in the property sheet of
their parent via an extended composition (see Extended Collections and Compositions (Profile) [page 587).

e FExtended links — define new types of links between objects.

Procedure

1. Right-click the Profile category, select Add Metaclasses, and click the PdCommon sub-tab in the dialog to
display the list of objects common to all models.

2. Select one or more of ExtendedLink, ExtendedSubObject, and ExtendedObject and click OK to add
them to your profile.

1 Note
To make the tools for creating extended objects and extended links available in the Toolbox of models
other than the free model, you must add them via the customization dialog available at |+ Tools

Customize Menus and Tools 3.

3. [optional] To create your own object add a stereotype (see Stereotypes (Profile) [page 43] and define
appropriate extensions under the stereotype. To have your object appear in the PowerDesigner interface as a
standard metaclass, with its own tool, Browser category and model list, select Use as metaclass in the
stereotype definition (see Creating New Metaclasses with Stereotypes [page 46]).

4. Click Apply to save the changes.

2.8 Stereotypes (Profile)

Stereotypes subclassify metaclasses so that extensions are applied to objects only if they bear the stereotype.
Stereotypes can be promoted to the status of metaclasses with a specific list, Browser category and custom
symbol and Toolbox tool.

Context

1 Note

You can define more than one stereotype for a given metaclass, but you can only apply a single stereotype to
each instance. Like other extensions, stereotypes support inheritance, so extensions to a parent stereotype are
inherited by child stereotypes.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 43

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select |+ New # Stereotype 3.

2. Enter the following properties as appropriate:

Table 14:

Property Description

Name Specifies the internal name of the stereotype, which is used for scripting.

Label Specifies the display name of the stereotype, which will appear in the PowerDesigner interface.

Parent Specifies a parent stereotype of the stereotype. You can select a stereotype defined in the same met-
aclass or in a parent metaclass. Click the Properties button to go to the parent stereotype in the tree
and display its properties.

Abstract Specifies that the stereotype cannot be applied to metaclass instances. The stereotype will not ap-

pear in the stereotype list in the object property sheet, and can only be used as a parent of other child
stereotypes. Disables the Use as metaclass property.

Use as metaclass

Promotes the stereotype to the same status as standard PowerDesigner metaclasses, to give it its
own list of objects, Browser category, and its own tab in multi-pane selection boxes such as those
used for generation (see Creating New Metaclasses with Stereotypes [page 46]).

No Symbol [available when Use as metaclass is selected] Specifies that instances of the stereotyped metaclass
cannot be displayed in a diagram and are visible only in the Browser. Disables the Toolbox custom
tool.

Icon Specifies an icon for stereotyped instances of the metaclass. Click the tools to the right of this field in

order to browse for . cur or . ico files.

i Note

Theicon is used to identify objects in the Browser and elsewhere in the interface, but not as a dia-
gram symbol. To specify a custom diagram symbol, see Custom Symbols (Profile) [page 84].

Toolbox custom
tool

[available for objects supporting symbols] Specifies a Toolbox tool to enable you to create objects in a
diagram. If you do not select this option, users are only able to create objects bearing the stereotype
from the Browser or Model menu. Custom tools appear in a separate Toolbox group named after the
resource file in which they are defined.

i Note

If you have not specified an icon, the tool will use a hammer icon by default.

Plural label

[available when Use as metaclass is selected] Specifies the plural form of the display name that will
appear in the PowerDesigner interface.

Customizing and Extending PowerDesigner

44 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Property

Default name

Description

[available when Use as metaclass or Toolbox Custom Tool is selected] Specifies a default name for
objects created. A counter will be automatically appended to the name specified to generate unique

names.

A default name can be useful when designing for a target language or application with strict naming
conventions. Note that the default name does not prevail over model naming conventions, so if a
name is not correct it is automatically modified.

Comment

Provides a description or additional information about the stereotype.

:} Process Language Properties {For All Models)

General |
& - - I.-’-'mal_lrlsis::F'rufile'\F'ru:ucess'\Stereu:ut_l,lpes'\BinaryCu:uIIal:uuratiDn j \% - |a - F-';Ef ‘2}
ﬁ Analysiz
: G |
{E’] Generation shEr I
{h Settings Mame: IEinar_l,lEnllahDratiDn
=5 Profile
{3 Shared Label: IEinar_l,l Collabaratian

----- ¢ Comrelation

g DataTransformation Lt I <Mone> j IEI

----- & Event [T fbstact W Use asmetaclass [Mo symbol
@ Operation o [Palette custom tool
Coh; B L
-0 Process : |— .
B3 Stereatypes < Cursorn click test area:
BinaryCollaboration
-+ Servicelnterface Elural label: |Binary Collaborations A
----- ﬁu ServiceProvider
..... 4 Wariable Default name: I

Camment:

0k I Cancel Apply | Help

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

45

2.8.1 Creating New Metaclasses with Stereotypes

You can use stereotypes to create new kinds of objects that behave like standard PowerDesigner metaclasses or
to have objects with identical names but different stereotypes in the same namespace (a metaclass stereotype
creates a sub-namespace in the current metaclass).

Context

For examples, see Creating New Types of Objects with Stereotypes [page 25].

1 Note

Stereotypes defined on sub-objects (such as table columns or entity attributes), cannot be promoted to
metaclass status.

Procedure

1. Create a stereotype under the metaclass on which you want to base your new metaclass. If the new object
type does not share characteristics with an existing metaclass, then use the ExtendedObject metaclass.

1 Note

If the ExtendedObiject or other metaclass is not visible, add it by right-clicking the Profile category, and
selecting Add Metaclass (see Metaclasses (Profile) [page 39]).

2. Inthe stereotype property page, select Use as metaclass.
3. [optional] Specify anicon and tool to create instances of the metaclass stereotype.

4. Click Apply to save the changes and then add extended attributes and other appropriate extensions under the
stereotype.

In your model, the stereotypes has:

o A separate list in the Model menu after the parent metaclass list (and the parent metaclass list will not
display objects with the metaclass stereotype). Objects created in the new list bear the new metaclass
stereotype by default. If you change the stereotype, the object will be removed from the list the next time
it is opened.

o A separate Browser folder and command under New, when you right-click the model or a package.

o Property sheet titles based on the metaclass label.

o Its own tab in multi-pane selection boxes such as those used for generation.

5. [optional: DBMS definition files] Add the new object to the script/0Objects and define appropriate SQL
statements to enable its generation and reverse-engineering (see Defining Generation and Reverse-
Engineering of New Metaclasses [page 153]).

Customizing and Extending PowerDesigner
46 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

2.9 Criteria (Profile)

Criteria subclassify metaclasses so that extensions are applied to objects only if they satisfy conditions. You can
test an object instance against multiple criteria, and for sub-criteria, its condition and any conditions specified by
its parents must be met for its extensions to be applied to the instance.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select | New » Criterion .

2. Enter the following properties as appropriate:

Table 15:

Property Description

Name Specifies the name of the criterion.

Condition Specifies the condition which instances must meet in order to access the criterion extensions. You
can use any expressions valid for the PowerDesigner GTL .if macro (see .if Macro [page 298]). You
can reference any extended attributes defined at the metaclass level in the condition, but not those
defined under the criterion itself.

For example, in a PDM, you can customize the symbols of fact tables by creating a criterion that will
test the type of the table using the following condition:

($DimensionalType% == "1")
$DimensionalType% is an attribute of the BaseTable object, which has a set of defined values,
including " 1", which corresponds to "fact". For more information, select |} Help > Metamodel
Objects Help 3, and navigate to | Libraries PdPDM ¥ Abstract Classes & BaseTable 3.

Parent Specifies the parent criterion of the criterion. To move the criterion to under another parent, select
the parent in the list. Click the Properties tool to open the parent and view its properties.

Comment Specifies additional information about the criterion.

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 47

F7 Object Language Properties [For All Models] |_ (O] x|

General |
e e = - |Java::F'ru:ufile"xlnterfau:e"'.Eriteria"xEJB Component |nterface\CriteriasEJE lj J-EH- % E
#-B Component -] _
E Dependency Hame: IEJB Local Interface
-8 FileObject Condition: I {%isLocalInterfaces)
H-B Generalization
=B Irterface Eareri: I EJE Component Interface j
-7 Criteria
: C f:
El EJE Component [nterface S=
- =[] Criteria ﬂ
-- EJB Local Interface
- IR EJB Remate Interface
; #-C1 Templates
B[] EJB Home Interface
-] Stereotypes
-2 Templates
=B Model
#--B Operation
-8B Package
F-B Parameter
#-B Realization —

k. I Cancel Spply Help

3. Click Apply to save your changes.

2.10 Extended Attributes (Profile)

Extended attributes define additional metadata to capture for object instances. You can specify a default value,
allow users to freely enter numeric, string, or other types of data (or select objects), provide an open or closed list
of possible values, or calculate a value.

Context

1 Note

Extended attributes are listed on a generic Extended Attributes tab in the object property sheet, unless you
insert them into forms (see Forms (Profile) [page 67]). If all the extended attributes are allocated to forms,
the generic page will not be displayed.

Customizing and Extending PowerDesigner
48 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select |+ New » Extended
Attribute 3.
2. Specify the following properties as appropriate:

Table 16:
Name Specifies the internal name of the attribute, which can be used for scripting.
Label Specifies the display name of the attribute, which will appear in the PowerDesigner interface.
Comment Provides additional information about the extended attribute.
Data type Specifies the form of the data to be held by the extended attribute. You can choose from:

o Boolean - TRUE or False.

o Color-xxx xxx xxx where xisan integer between 0-255.

o Date or Time - your local format as specified in your Windows regional settings

o File or Path - cannot contain /// or any of the following characters: 2" <>|.

o Integer or Float - the appropriate local format.

© Hex-ahexadecimal.

o Font- font name, font type,font size.

o Font Name or Font Style - a 1-50 character string.

o Font Size - aninteger between 1-400.

o Object - an object of the correct type and, if appropriate, with the correct stereotype. When se-
lecting this type you must specify an Object type and, if appropriate, an Object stereotype, and
you can also specify an Inverse collection name (see Linking Objects Through Extended Attrib-
utes [page 57]).

o Password - no restrictions.

o String (single line) or Text (multi-line) - no restrictions.

Select the Validate check box to the right of the list to enforce validation of the values entered for the
attribute.
To create your own data type, click the Create Extended Attribute Type tool to the right of the field
(see Creating an Extended Attribute Type [page 54]).

Computed Specifies that the extended attribute is calculated from other values using VBScript on the Get
Method Script, Set Method Script, and Global Script tabs, or via an aggregation specified on the
Definition tab. When you select this checkbox, you must choose between:

o Read/Write (Get+Set methods) - For example scripts, see Calculated Attribute Scripts [page
52].

o Read only (Get method)

o Aggregated Metric - See Aggregating Attribute Values with Aggregated Metrics [page 57].

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 49

Property

Default value

Description

[if not computed] Specifies a default value for the attribute. You can specify the value in any of the
following ways:
o Enter the value directly in the list.

o [predefined data types] Click the Ellipsis button to open a dialog listing possible values. For ex-
ample, if the data type is set to Color, the Ellipsis button opens a palette window.

o [user-defined data types] Select a value from the list.

Template

[if not computed] Specifies that the value of the attribute is to be evaluated as a GTL template at
generation time. For example, if the value of the attribute is set to $Code%, it will be generated as
the value of the code attribute of the relevant object.

By default (when this checkbox is not selected), the attribute is evaluated literally, and a value of
%Code% will be generated as the string $Code%.

List of values

Specifies a list of possible values for the attribute in one of the following ways:
o Enter a static list of semi-colon-delimited values directly in the field.
o Use the tools to the right of the list to create or select a GTL template to generate the list dy-

namically.
If the attribute type is Object, and you do not want to filter the list of available objects in any

way, you can leave this field blank.
To perform a simple filter of the list of objects, use the . collection macro (see .object
and .collection Macros [page 301]). In the following example, only tables with the Generated

attribute set to true will be available for selection:
.collection (Model.Tables, %Generated%==true)

For more complex filtering, use the foreach_item macro (see .foreach_item Macro [page
293)):

.foreach item (Model.Tables)
.1f %$Generated%
.// (or more complex criteria)
%0bjectID%
.endif
.next (\n)

If the attribute is based on an extended attribute type (see Creating an Extended Attribute Type
[page 5417), this field is unavailable since the values of the extended attribute type will be used.

Complete

Specifies that all possible values for the attribute are defined in the List of values, and that the user
may not enter any other value.

Customizing and Extending PowerDesigner

50 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Property Description

Edit method [if not Complete] Specifies a method to override the default action associated with the tool to the
right of the field.

This method is often used to apply a filter defined in the List of values field in the object picker. In the
following example, only tables with the Generated attribute set to true will be available for selec-
tion:
Sub %$Method% (ob7j)
Dim Mdl
Set Mdl = obj.Model
Dim Sel
Set Sel = Mdl.CreateSelection
If not (Sel is nothing) Then
Dim table
For Each table in Mdl.Tables
if table.generated then
Sel.Objects.Add table
end if
Next
' Display the object picker on the selection
Dim selObj
set selObj = Sel.ShowObjectPicker
If Not (selObj is Nothing) Then
obj.SetExtendedAttribute "Storage-For-Each", selObj
End If
Sel.Delete
End If
End Sub

Icon Set Specifies a set of icons to display on object symbols in place of extended attribute values (see Speci-
fying Icons for Attribute Values [page 55]).

Text format [for Text data types only] Specifies the language contained within the text attribute. If you select
any value other than plain Text, then an editor toolbar and (where appropriate) syntax coloring are
provided in the associated form fields.

Object type / ster- | [for Object data types only] Specify the type of the object that the attribute contains (for example,

eotype / Inverse User, Table, Class) and, optionally a stereotype that objects of this type must bear to be selectable.

collection name o)) i
If the computed option is not selectd, you can also specify the name under which the links to the
object will be listed on the Dependencies tab of the target object.

An extended collection with the same name as the extended attribute, which handles these links, is
automatically created for all non-computed extended attributes of the Object type, and is deleted
when you delete the extended attribute, change its type, or select the Computed checkbox.

Physical option [for [Physical Option] data types only] Specifies the physical option with which the attribute is asso-
ciated. Click the Ellipisi tool to the right of this field to select a physical option. For more information,
see Adding DBMS Physical Options to Your Forms [page 228].

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 51

Property Description

Unit [for aggregated metric calculated attributes] Specifies the currency unit to apply to the metric.

r DBMS Properties (For All Models) o [m]

Gieneral | Trigger Templatesl Trigger Template Itemsl Frocedure Templates

- - |SYASE1502:ProfilshT ablshE stended Attributes\w/ithl dentityGap A T
EEI---Ifh Phuzicalllomain ;I General |
E]--@ Procedure
g% otorase Nare: [withidentityG ap
= ahle
E] Criteria Label: |
B Custom Checks) — —
EE:I Estended Attibutes Comment: Specifies the identity gap for the table ﬂ
AR
{3 Ewternall able
{3 Lock
5] On
<[Parlition hd!
12 WithExpRowSize - -
(30 (e Ep Data type: | Physical Option] 2 Y
- {E] withi axFowsPe [V | Computed: % Fiead/wite [Get+5et methods]) Bead only [Get method)
- [5] withReservepage—
F-C5) Forms Default value: I j _I Template 7
EE Hfzﬂuiﬂ hd List of walues: I @ Complete
1| Il

] I Cancel | Apply I Help

3. Click Apply to save your changes.

2.10.1 Calculated Attribute Scripts

You can create extended attributes whose values depend on the values of other attributes. These can be read-
only or read and write.

The following scripts provide a means for reading and writing the value from the standard Name attribute into a
calculated extended attribute:

Table 17:
Get Script Set Script
Function %Get% (obj) Sub %Set% (obj, value)
%Gets = obj.GetAttribute ("Name") obj.SetAttribute "Name", value
End Function End Sub

The following scripts read the value of the computed FileGroup extended attribute from the filegroup
physical option, and write back to the physical attribute:

Customizing and Extending PowerDesigner
52 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Table 18
Get Script Set Script
Function %Get$% (ob7j) Sub %Set% (obj, value)
$Get% = obj.GetPhysicalOptionValue ("on/ obj.SetPhysicalOptionvalue "on/
<filegroup>") <filegroup>", value
End Function End Sub

The following script reads the value of the name of the database associated with the PDM into the read-only
Database extended attribute defined on the table metaclass:

Table 19:

Get Script Set Script

) i [none]
Function %Get% (ob7j)

¥Gets =
obj.GetAttribute ("Parent.Database.Name"
)

End Function

The following script evaluates the value of the Numbe r attribute of a table to set the boolean BigTable extended
attribute:

Table 20:
Get Script ‘SetScht

[none]
Function %Get% (obj)

%Get% = obj.GetAttribute ("Number") >
99999
End Function

You can use the following syntax to more explicitly set the
boolean:

Function %Get% (obj)
Dim value
If obj.GetAttribute ("Number") >

99999 then
value = true
Else
value = false
End if

%Gets = value
End Function

The following script evaluates the value of the Number attribute of a table to set a text Tablesize extended
attribute:

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 53

Table 21:
Get Script ’ Set Script

[none]
Function %Get% (ob3j)
Dim value
If obj.GetAttribute ("Number") <
10000 then
value = "Small"
ElseIf ((obj.GetAttribute ("Number")
> 9999) and
(obj.GetAttribute ("Number") < 100000))
then
value = "Medium"
ElseIf ((obj.GetAttribute ("Number")
> 99999) and
(obj.GetAttribute ("Number") <
1000000)) then

value = "Large"
Else

value = "Very Large"
End if

%Gets = value
End Function

2.10.2 Creating an Extended Attribute Type

You can create extended attribute types to define the data type and authorized values of extended attributes.
Creating extended attribute types allows you to reuse the same list of values for several extended attributes
without having to write code.

Procedure

1. Right-click the Profile\Shared category and select [New » Extended Attribute Type 3.

2. Enter the appropriate properties, including a list of values and a default value.

Customizing and Extending PowerDesigner
54 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

] Extended Model Definition Properties [For All Modelz]

General |

- ¥ I'W'El:lLl:lgiI:::PerilE'\SharEd'\EHtendEdMtribute Typesweblogic-boolean j »% - = - ﬂf 32}

] BE& weblagic 7.0 -
-0 Generation
=2 Profile
B Shared
=143 Extended Attribute Types

%Y weblogic-cache-type

1% weblogic-concurrency-strategy
{3 weblogic-dbrs-column-type
-] weblogic-delay-database-inzert-u

weblogic-boolean

{1 weblogic-generator-type
-3 weblogic-load-algarithm
1% weblogic-pazsivation-strategy
-3 weblogic-replication-type
{3 weblogic-type-identifier

-0 Templates
#-Tg Association

[+ Ty AssociationM apping
[en = N T Oy I _ILI
3

M arne: weblogic-boolean

Comment: [Boolean data type for Weblogic. ﬂ

Ligt of values:

' Pl gF B

[True
[JFalze

] I Cancel Spply | Help

3. Click Apply to save your changes.

The new shared type is available to any extended attribute in the Data Type field. You can also define a list of

values for a given extended attribute directly in this field (see Extended Attributes (Profile) [page 48]).

2.10.3 Specifying Icons for Attribute Values

You can specify icons to display on object symbols in place of extended attribute values by creating an attribute

icon set with individual attribute value icons for each possible value.

Procedure

1. Create an extended attribute (see Extended Attributes (Profile) [page 48]).

2. Select a standard data type or an extended attribute type (see Creating an Extended Attribute Type [page

54]).

3. If appropriate, specify a list of possible values and a default value.

4. Click the Create tool to the right of the Icon set list to create a new icon set

A new icon set is created at |[» Profile » Shared » Attribute Icon Sets

an empty icon which matches any value for which another icon has not been defined (=*).

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

initialized with the possible values and

55

5. Foreachvalue in the list, double-click it, and click the Icon tool to select an icon to represent this value on
object symbols:

L>ﬂ Extension Properties (Project Management (CDM]) E\
General
- - BEXTENDEDDEFINITION_1::ProfileShared"Attribute lcon Sets\Completionlcon Set - \% - Lg = F-'Ef ‘2} FE
L).f] Completion . :
{h Gensration Marne: Completionlcon Set
=) Profile Cornrent; =
203 Shared (d
=) Attribute Icon Sets
: i..#% CompletionlconS
=) Extended Attribute Ty =
B Emlﬁ Completion List of values:
B ity
Elh Exdended Attributes H X | %’| v
{39 Completion = Mot Started
EI[EI Farms M= In Progress
‘ 11 iy
[ok][cance Apply Help
1 Note

By default, the Filter operator field is set to =, and each icon matches exactly one possible value. To have a
single icon match multiple values, use the Between or another operator together with a suitable Filter

value. For example, in an icon set paired with a progress attribute for which the user can enter any value
between 0 and 100% progress, you could use three icons:

o Not Started-= 0
o |InProgress - Between 1,99
o Completed-= 100

6. If appropriate, add the attribute to a form (see Forms (Profile) [page 67]), to enable users to modify its

value.

7. Click OK to save your changes and return to the model.

To enable the display of the icon on your object symbol, select |» Tools » Display Preferences 3, select your
object type, and click the Advanced button to add your attribute to the symbol. For detailed information about

working with display preferences, see Core Features Guide > Modeling with PowerDesigner > Diagrams,
Matrices, and Symbols > Display Preferences.

Your attribute is now displayed on object symbols. In the following example, the Employee entity is In
Progress, While the Customer entity is Completed:

Customizing and Extending PowerDesigner
56 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Customer [

Employee 1 Customer number Zpi= IO ==
Employee number =piz |0 =M= Customer name NAME =M=
First name NAME Customer address SHORT_TEXT =M=
Last name NAME <M= Customer achivity SHORT_TEXT
Employee functicn NAME Customer telephone PHONE
Employee salary MONEY Customer fax PHONE
Idtf_2 <pi= Idtf_3 <pi=

2.10.4 Linking Objects Through Extended Attributes

Specify the [Object] data type to allow users to select another object as the value of the attribute. You must
specify an Object type (metaclass) to link to, and can optionally specify an Object stereotype to filter the objects
available for selection and an Inverse collection name, which will be displayed on the Dependencies tab on the
referenced object property sheet.

For example, under the Table metaclass, | create an extended attribute called Owner, select [Object] in the Data
type field, and User in the Object type field. | name the inverse collection Tables owned. When | set the Owner
property of a table, the table will be listed on the Dependencies tab of the user property sheet, under the inverse
collection name of Tables owned.

2.10.5 Aggregating Attribute Values with Aggregated Metrics

Aggregated metrics are extended attribues that contain values calculated by aggregating other values from other
objects. For example, if EAM business functions are linked to multiple systems that support them, and an annual
cost is specified for each system, you could create an aggregated metric for business functions that will calculate
the total annual costs.

Context

Procedure

1. Create an extended attribute, and set the following properties:
o Data type - Select a numeric data type.
o Computed - Select this property to indicate that the attribute will be calculated from other values.
o Aggregated Metric - Select this option to reveal the Unit property.
o Unit - Select a currency symbol from the list.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 57

2. Click the Definition tab to define how the aggregated metric will be calculated, and set the following

properties:
Table 22:
Property Description
Function Specifies how the aggregated values will be calculated. You can choose from:
o Avg - Returns the average value of all the values received.
o Count - Returns the number of values received.
o Max - Returns the highest value received.
o Min - Returns the lowest value received.
o Sum (default) - Returns the total value of all the values received.
Attributes Lists the numeric attributes available for aggregation in the metaclass itself. Select one or more
attributes to include them in the calculation.
Collections Specifies the paths to other metaclassess that will provide values to the aggregated metric. To

specify a path:

1. Select a metaclass in the Influent column.

2. Specify a path to the influent metaclass in the Path column. If the influent metaclass has a
direct relationship with the aggregating metaclass, then this path will generally be proposed.
If no path is proposed or you want to specify another path, click the ellipsis button to open
the Dataset Definition Wizard (see Chart Datasets (Profile) [page 120]), which allows you to
specify a path through the metamodel.

3. Select the numeric attribute that you want to aggregate in the Measure column.

You can specify as many paths and measures as necessary, and all will be aggregated together.

3. [optional] Add your aggregated metric to a property sheet (see Forms (Profile) [page 67]).
4. Click Apply to save your changes, or OK to return to your model.

In this example, extended attributes have been added to the application, database, and system metaclasses,
and the Total Annual Cost aggregated metric defined on the system aggregates these values:

m CMP

Total Annual Cost: 54,000
Systemn Annual Cost: 15,000

Exeon Dynahand Principal DB Backup OB
Annual Cost: 2,500 Annual Cost: 9,000 Annual Cost: 20,000 Annual Cost: 7,500

2.11 Extended Collections and Compositions (Profile)

Extended collections define the possibility to associate an object instance with a group of other objects of the
specified type. Extended compositions define a parent-child connection between an object instance and a group
of sub-objects derived from the ExtendedSubObject metaclass.

Customizing and Extending PowerDesigner
58 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Context

For extended collections, the association between the parent and child objects is relatively weak, so that if you
copy or move the parent object, the related objects are not copied or moved, but the connection is maintained
(using shortcuts if necessary). For example, you could associate documents containing use case specifications
with the different packages of a model by creating an extended collection under the Package metaclass and
specifying FileObject as the target metaclass.

For extended compositions, the association is stronger. Sub-objects can only be created within the parent object
and are moved, copied, and/or deleted along with their parent.

The collection or composition is displayed as a new tab in the object instance property sheet. The property sheets
of objects referenced in a collection show the object instance owning the collection on their Dependencies tab.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select |+ New » Extended
Collection 1 or Extended Composition.

1 Note

If you define the collection or composition under a stereotype or criterion, its tab is displayed only if the
metaclass instance bears the stereotype or meets the criterion.

2. Enter the following properties as appropriate:

Table 23:

Name Specifies the name of the extended collection or composition.

Label Specifies the display name of the collection, which will appear as the name of the tab associated with
the collection in the parent object property sheet.

Comment [optional] Describes the extended collection.

Inverse Name [extended collection only] Specifies the name to appear in the Dependencies tab of the target meta-
class. If you do not enter a value, an inverse name is automatically generated.

Target Type Specifies the metaclass whose instances will appear in the collection.

For extended collections, the list displays only metaclasses that can be directly instantiated in the cur-
rent model or package, such as classes or tables, and not sub-objects such as class attributes or table
columns. Click the Select a Metaclass tool to the right of this field to choose a metaclass from another
type of model.

For extended compositions, only the ExtendedSubObject is available, and you must specify a stereo-
type forit.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 59

Property Description
Target Stereo- [required for extended compositions] Specifies a stereotype to filter the target type. You can select an
type existing stereotype from the list or click the Create tool to the right of this field to create a new one.

List Columns

add or remove columns.

Specifies the property columns that will be displayed by default in the parent object property sheet
tab associated with the collection. Click the Customize Default Columns tool to the right of this field to

umn's values.

Allow manual or- | Specifies that users can control the order of the objects in the collection. When this option is:

dering of objects | o Selected - [default for extended compositions] The objects in the collection are displayed, by de-
fault, in the order in which they are added, and users can reorder them using the arrow tools
available under the collection.

o Unselected - [default for extended collections] The objects in the collection are displayed, by de-
fault, alphabetically by name, and users can click any column heading to order them by that col-

3. Click Apply to save your changes.

-

Extension Properties (Core Processes)

General

- = MyExtensions::Profile\ProcesshExtended Collections Table Resources

c A g

MyBEdensions
-7 Generation

-3 Settings

EI@ Extended Collections
B4) TableResources

Mame:
Label:

Comment;

Inerse Mame:

Target Type:

Target Stereatype;

Lizt Columng:

Sort Objects

TableResources

Tables

Lizt of tables uzed as resources for the process

Processes Using Table

PAPDM.Table =)&)

~ [l

Mame - @ .

Code
Mumber of Records

Prirczrn K an

0K | [Cancel || ook |[hHep

You can view the tab associated with the collection by opening the property sheet of a metaclass instance.
The tab contains an Add Objects (and, if the metaclass belongs to the same type of model, Create an Object)

tool, to populate the collection.

60 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

1 Note

When you open a model containing extended collections or compositions and associate it with a resource
file that does not support them, the collections are still visible in the different property sheets in order to let
you delete objects in the collections no longer supported.

2.12 Calculated Collections (Profile)

Calculated collections define a read-only connection between an object instance and a group of other objects of
the specified type. The collection displays as a sub-tab on the Dependencies tab of the object property sheet. The
logic of the collection is defined using VBScript.

Context

For example, in an OOM, you may need to create a list of sequence diagrams using an operation, and can create a
calculated collection on the operation metaclass that retrieves this information. In a BPM, you could create a
calculated collection on the process metaclass that lists the CDM entities created from data associated with the
process.

You can loop on calculated collections with GTL (see Accessing Collections of Sub-Objects or Related Objects
[page 2707]) You can use calculated collections to fine-tune impact analysis to better evaluate the impact of a
change. For example, in a model where columns and domains can diverge, you can create a calculated collection
on the domain metaclass that lists all the columns that use the domain and have the same data type.

1 Note

Calculated collections, unlike extended collections (see Extended Collections and Compositions (Profile) [page
58]) cannot be modified by the user.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select [New » Calculated
Collection .

2. Enter the following properties as appropriate:

Table 24:

Property Description

Name Specifies the name of the calculated collection for use in scripts.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 61

Property Description

Label Specifies the display name of the collection, which will appear as the name of the tab associated
with the collection in the parent object property sheet.

Comment [optional] Describes the calculated collection.

Target Type Specifies the metaclass whose instances will appear in the collection. The list displays only meta-
classes that can be directly instantiated in the current model or package, such as classes or ta-
bles, and not sub-objects such as class attributes or table columns.

Click the Select a Metaclass tool to the right of this field to choose a metaclass from another type
of model.

Target Stereotype [optional] Specifies a stereotype to filter the target type. You can select an existing stereotype
from the list or enter a new one.

List Columns Specifies the columns displayed by default on the collection property sheet tab.

3. Click the Calculated Collection Script tab and enter a script that will calculate which objects will form the
collection.

The following script recreates the list on the Outgoing References sub-tab on a table's Dependencies tab:

Function %Collection% (obj, coll) ' Required
dim r
For each r in obj.outreferences
coll.Add r ' Populates collection
Next
%Collection% = True ' Required
End Function ' Required
1 Note

You can reuse functions on the Global Script tab (see Global Script (Profile) [page 126]) but you should be
aware that if you declare global variables they will not be reinitialized each time the collection is calculated,
and will keep their value until you modify the resource file, or the PowerDesigner session ends. This may
cause errors, especially when variables reference objects that can be modified or deleted. Make sure you
reinitialize the global variable if you do not want to keep the value from a previous run.

4. Click Apply to save your changes.

Customizing and Extending PowerDesigner
62 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

] Extended Model Definition Properties {Class Diagram_1)

General |
- - |M_I,IE:-ttensiu:uns::F'ru:ufile‘aElperatinn\EaIcuIated Collections\Collection_1 j u:k - lﬂ - Ffff 12}
1] MyEstensions = - .
- General
h’i'l Generation | Calculated Collection Script I Global Script |
E“ii' Profile M arne: IMessageslnDiagrams
I3 Shared
-5 Operation Label: |Diagram Meszages
=) Calculated Collections _
L[MessageslnDiagrams S ﬂ

Target Type: IMessage j Ig

Target Stersatype: I j

Ligt Columnms: Mame =
Code —
Sender ﬂ

P armaiar

(] I Cancel Apply | Help |

5. Toview the collection, open the property sheet of a metaclass instance to the Dependencies tab and select
the appropriate sub-tab.

6. [optional] Add the collection to your model reports. Calculated collections are automatically available in the
new Report Editor as lists under the appropriate metaclass book. You can add calculated collections to a
legacy report, by changing the collection of the appropriate metaclass book or list (see Core Features Guide >
Modeling with PowerDesigner > Reports > The Legacy Report Editor > Modifying the Collection of an Item).

2.13 Dependency Matrices (Profile)

Dependency matrices allow you to review and create links between any kind of objects. You specify one metaclass

for the matrix rows, and the same or another metaclass for the columns. The contents of the cells are then
calculated from a collection or link object.

Context

For example, you could create dependency matrices that show links between:

e (OOM Classes and Classes — connected by Association link objects

Customizing and Extending PowerDesigner

Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 63

e PDM Tables and Users — connected by the Owner collection

Ll
g
B8 |=
T |8
= r.lg o
=1 | =T | =T
oo | oa | da
=g =) =]
Custarmers ¥
Diwizionz ¥
Employees ¥
Groups ¥
Order Lines *

e PDM Tables and OOM Classes — connected by extended dependencies

Procedure

1. Right-click the Profile category and select Add Dependency Matrix to add the DependencyMatrix metaclass
to the profile and create a stereotype under it, in which you will define the matrix properties.

2. Onthe General tab, enter a name for the matrix (for example Table Owners Matrix) along with alabel and
plural label for use in the PowerDesigner interface, as well as a default name for the matrices that users will
create based on this definition.

3. Click the Definition tab to specify the rows and columns of your matrix and how they are associated using the
following properties.

Table 25:
Property Description
Rows Specifies the object type with which to populate your matrix rows.
Columns Specifies the object type with which to populate your matrix columns. Click the Select Metaclass but-
ton to the right of the list to select a metaclass from another model type.
Matrix Cells Specifies how the rows and columns of your matrix will be associated. You must specify a Dependency

from the list, which includes all the collections and links available to the object.

Click the Create button to the right of the list to create a new extended collection (see Extended Col-
lections and Compositions (Profile) [page 58]) connecting your objects, or the Advanced button to
specify a complex dependency path (see Specifying Advanced Dependencies [page 66]).

For certain dependencies, the Object type on which the dependency is based will be displayed, and
you can select an Object attribute to display in the matrix cells along with the No value symbol, which
is displayed if that attribute is not set in any particular instance.

64 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner

Extension Files

': DBMS Properties (For All Models)

Gieneral | Trigger Templatesl Trigger Template Itemsl Procedure Templatesl

=] E3

= - |SY.-’-‘-.SIIJ'IEEIEI::F'ru:ufile'xDependencyMatri:-cHStereu:ut_l.lpes"-.Tal:lle Dwrers j (O R Hi': 1';}

J Sybase |0 15.x - .
- — Drefirt
.,j Generation General Lefiniion |
E- Ger.‘uaral — Object types
E-Q SC”F't Rows: I able j
El.j Profile
B0 Shared Calurnnz: I'_:. L zer j @
E Calurmir
J DataSource _ — Matrix cells
E‘ Dependencyhatriz Dependency: IDwner j Advanced... |
M Stereatypes (I
b2 Lifecycle/T able Dbject type: I
i 2z Table Owners b . ;
5 ExtendedObisct Object attribute; |<N|:|ne> j Mo walue: I—

EntendedSublbject
= Index

-2 Joinlndex

B Key

#-T0 Model

[+

@ Procedure =~
4| | >

Cancel Apply Help

o<]

4. Click OK to save your matrix and close the resource editor.

You can now create instances of the matrix in your model as follows:
o Select|j» View # Diagram » New Diagram » Matrix Name
o Right-click a diagram background and select |» Diagram » New Diagram » Matrix Name

o Right-click the model in the browser and select |[» New » Matrix Name

1 Note

For information about using dependency matrices, see Core Features Guide > Modeling with
PowerDesigner > Diagrams, Matrices, and Symbols > Dependency Matrices.

Customizing and Extending PowerDesigner

Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

65

2.13.1 Specifying Advanced Dependencies

You can examine dependencies between two types of objects that are not directly associated with each other,
using the Dependency Path Definition dialog, which is accessible by clicking the Advanced button on the Definition
tab, and which allows you to specify a path passing through as many intermediate linking objects as necessary.

Each line in this dialog represents one step in a dependency path:

Table 26:

Property Description

Name Specifies a name for the dependency path. By default, this field is populated with the origin and desti-
nation object types.

Dependency Specifies the dependency for this step in the path. The list is populated with all the possible dependen-
cies for the previous object type.

Object Type Specifies the specific object type that is linked to the previous object type by the selected dependency.
This field is autopopulated if only one object type is available through the selected dependency.

In the following example, a path is identified between business functions and roles, by passing from the business
function through the processes it contains, to the role linked to it by a role association:

Il Dependency Path Definition Ed

M ame:

IBusiness Function / Raole

Dependency path:

Create az many rows az necezzary in the lisk below to provide a path through the metamodel
from ‘Business Function' to 'Fole"

Dependency

Ohject Type

Frocesses

Process

Fole Aszociations

Fole

Reset |

(] I Cancel |

66 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

2.14 Forms (Profile)

Forms present standard and extended attributes and collections as property sheet tabs or can be used to create
dialog boxes launched from menus or property sheet buttons.

Context

1 Note

Unless you add them to a form, extended attributes are listed alphabetically on the Extended Attributes tab of
the object's property sheet. By creating your own form, you can make these attributes more visible and easy to
use, by organizing them logically, grouping related ones, and emphasizing those that are most important. If you
associate all of your extended attributes with a form, the Extended Attributes tab is not displayed.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select |» New » Form 3.

1 Note

If you define a property tab under a stereotype or criterion, it is displayed only when the metaclass instance
bears the stereotype or meets the criterion.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 67

General

- = WSBPEL 2.0:.Profile’\Process \Forms“WS-BPEL

Madel
MNamedObject

@ Operation

: (ﬁ Organizationlnit
-3 Package

140 Process

&) Criteria

IEJ Event Handlers
- Bdended Attributes
EIIEJ Forms

[#-IC) Generated Files
-2 Methods
IE} Templates
‘.48 Custom Symbol
(@ ProcessEnd

.- [F

:'Cj¥ RoleAssociation
r-+ Servicelnteface
-5 ServiceProvider
-k Synchronization
t-- & Varable

J@ ¥edDocument

[OO O e O ey O o O |

r

m

4

Mame: WS-BPEL

Label:

Cormment:

Help file:

Tvpe: [Fmpaty Tab

Form | s<pdL

v] Add to favarite tabs

Preview

B @™ 0D 2 S 58

Form
joinCondition
suppress.Join Failure
expression Language

J [Concel]|

Aoply | |

2. Enter the appropriate following properties:

Table 27:

Property Description

Name Specifies the internal name of the form, which can be used for scripting.

Label Specifies the display name of the form, which will display in the tab of the property tab or in the title bar of
the dialog box.

Comment Provides additional information about the form.

68 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

Property Description
Help file Enables the display of a Help button and specifies an action that will be performed when the button is
clicked or Flis pressed when in the context of the form.
The action can be the display of a help file (.hlp, .chm or .html), and can specify a specific topic. For in-
stance:
C:\PD1500\pddocl5.chm 26204
If no help file extension is found, the string will be treated as a shell command to execute. For instance,
you could instruct PowerDesigner to open a simple text file:
notepad.exe C:\Temp\Readme.txt
Type Specifies the kind of form. You can choose from the following:
o Dialog Box — creates a dialog box that can be launched from a menu or via a form button
o Property Tab - creates a new tab in the property sheet of the metaclass, stereotype or criterion
o Replace <standard> Tab —replaces a standard tab in the property sheet of the metaclass, stereo-
type or criterion. If your form is empty, it will be filled with the standard controls from the tab that you
are replacing.
Add to favor- | [property tabs only] Specifies that the tab is displayed by default in the object property sheet.
ite tabs

3. Insert controls as necessary in your form using the toolbar on the Form tab (see Adding Extended Attributes
and Other Controls to Your Form [page 69]).

4. Click the Preview button to review the layout of your form and, when satisfied, click Apply to save your

changes.

2.14.1 Adding Extended Attributes and Other Controls to Your

Form

You insert controls into your form using the tools in the Form tab toolbar. You can reorder controls in the form
control tree by dragging and dropping them. To place a control inside a container control (group box or horizontal
or vertical layout), drop it onto the container. For example, if you want the extended attributes GUID, InputGUID,
and OutputGUID to be displayed in a GUI group box, you should create a group box, name it GUl and drag and
drop all three extended attributes under the GUI group box.

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 69

The following tools are available:

Table 28:

Tool Description

am

Add Attribute / Collection — opens a selection box in which you select standard or extended attributes or col-
lections belonging to the metaclass to insert into the form. If you do not enter a label, the attribute or collection
name is used as its form label. If you have entered a comment, it is displayed as a tooltip.

The type of control associated with an attribute depends on its type: booleans are associated with check
boxes, lists with combo boxes, text fields with multi-line edit boxes, and so on. Collections are displayed as
standard grids with all the appropriate tools.

Add Group Box - inserts a group box, intended to contain other controls within a named box.

Add Tab Window - inserts a sub-tab layout, in which each child control appears, by default, in its own sub-tab.
To place multiple controls on a single sub-tab, use a horizontal or vertical layout.

Add Horizontal / Vertical Layout - inserts a horizontal or vertical layout. To arrange controls to display side by
side, drag them onto a horizontal layout in the list. To arrange attributes to display one under the other, drag
them onto a vertical layout in the list. Vertical and horizontal layouts are often used together to provide col-
umns of controls.

Include Another Form - inserts a form defined on this or another metaclass in the present form (see Example:
Including a Form in a Form [page 78]).

Add Method Push Button - opens a selection box in which you select one or more methods belonging to the
metaclass to associate with the form via buttons. Clicking the button invokes the method. If you do not enter a
label, the method name is used as the button label. If you have entered a comment, it is displayed as a tooltip.

Add Edit / Multi-Line Edit Field [dialog boxes only] inserts an edit or multi-line edit field.

Add Combo Box / List Box / Check Box [dialog boxes only] - inserts a combo box, list box, or check box.

Add Text / Separator Line / Spacer - inserts the appropriate decorative control. The separator line is vertical
when its parent control is a vertical layout.

Delete — deletes the currently selected control.

Select a control to specify properties to control its format and contents:

Table 29:

Property

Definition

Name

Internal name of the control. This name must be unique within the form. The name can be used in scripts
to get and set dialog box control values (see Example: Opening a Dialog Box from a Menu [page 98]).

70 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

Property

Label

Definition

Specifies a label for the control on the form. If this field is left blank, the name of the control is used. If
you enter a space, then no label is displayed. You can insert line breaks with \ n.

To create keyboard shortcuts to navigate among controls, prefix the letter that will serve as the shortcut
with an ampersand. If you do not specify a shortcut key, PowerDesigner will choose one by default. To
display an ampersand in a label, you must escape it with a second ampersand (for example: & Johnson
&& Son will display as Johnson & Son.

Attribute

[included forms] Specifies the object on which the form to be included is defined. The list is populated
with all attributes of type object and the following objects:

e <None> - the present metaclass

® Generation Origin - for example, the CDM entity from which a PDM table was generated

e Model - the parent model

e Parent - the immediate parent object for sub-objects (for example, the table containing a column

e Parent Folder - the immediate parent object for composite objects (for example BPM processes
that contain other processes)

e Parent Package - the immediate parent package

Form name

[included forms] Specifies the name of the form that will be included. You can:

e Select a standard property sheet tab name from the list.
e [Enter the name of a custom form defined in the extension file.

e FEnter the name of a GTL template to generate XML to define the form.

Indentation

[container controls] Specifies the space in pixels between the left margin of the container (form, group
box, or horizontal or vertical layout) and the beginning of the labels of its child controls.

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 71

Property

Label space

Definition

[container controls] Specifies the space in pixels reserved for displaying the labels of child controls be-
tween the indentation of the container and the control fields.

To align controls with the controls in a previous container, enter a negative value. For example, if you
have two group boxes, and want all controls in both to be aligned identically, set an appropriate indenta-
tion in the first group box and set the indentation of the second group box to - 1.

If a child control label is larger than the specified value, the label space property is ignored; to display this
label, you need to type a number of pixels greater than 50.

Advanced Teradata Attributes _ O] =]
Startup: IDefauIt walue [preview mode)
Fallback: IDefauIt walue [preview mode) j
Group box label Drefault Database: IDefauIt walue [preview mode)
= Journal
Indentation [Houmal IDefauIt value [preview mode] j
Default Jourmal T able; |Default value [preview mode]
Label space —[After Journal: || efault value [preview mads) j

(] I Cancel

Show control as la-

[group boxes] Use the first control contained within the group box as its label.

bel

Show Hidden At- [extended attributes] Displays controls that are not valid for a particular form (because they do not bear

tribute the relevant stereotype, or do not meet the criteria) as greyed. If this option is not set, irrelevant options
are hidden.

Value [dialog box entry fields] Specifies a default value for the control. For extended attributes, default values

must be specified in the attribute's properties (see Extended Attributes (Profile) [page 48]).

List of Values

[combo and list boxes] Specifies a list of possible values for the control. For extended attributes, lists of
values must be specified in the attribute's properties (see Extended Attributes (Profile) [page 48]).

Exclusive

[combo boxes] Specifies that only the values defined in the List of values can be entered in the combo
box.

Customizing and Extending PowerDesigner

72 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Property Definition

Minimum Size Specifies the minimum width (in characters) to which the control may be reduced when the window is

(chars) resized.

Minimum Line Specifies the minimum number of lines to which a multiline control may be reduced when the window is

Number resized.

Horizontal / Verti- | Specifies that the control may be resized horizontally or, for multiline controls, vertically, when the prop-

cal Resize erty sheet or dialog is resized.

Read-Only [included forms and dialog box entry fields] Specifies that the control is read-only, and will be greyed in
the form.

Hide Value [single line edit fields in dialog boxes] Specifies that characters entered in the field are masked. Suitable
for entering a password.

Left Text [booleans] Places the label text to the left of the checkbox.

Display [booleans and methods] Specifies the form in which the boolean options or method button are dis-
played.
For booleans, you can choose between a check box or vertical or horizontal radio buttons, while for
methods, you can choose from a range of standard icons or Text, which prints the text specified in the
Label field on the button.

Width/ Height [spacers] Specify the width and height, in pixels, of the spacer.

2.14.2 Example: Creating Common Form Controls

In this example, we will give instructions for creating each of the most common controls for presenting attributes

on your forms.

The following form contains many of the most commonly-used controls for presenting attributes in your forms:

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 73

Propeties - MyObject (MyObject
General | My Form | Notes | Rules | Related Diagrams | Dependencies | Traceability Links | Version Info |

Singledine text: Some texd| Bead-onty: MyObject

Muttidine rich text: | 25+ @vgg%|gqﬁg|qp|aﬁjg|ggj§@

Color picker: 25500

Checkbox Radio buttons: @ Test File picker: C:temp'myFile bt =
© g‘“‘ Date picker: 25/08/2013 O~
L Dev IE

GroupBoo
Choose value from list: [Heady v] Enter or choose value: MyValue

Choose object: [IEI MyCtherObject v]

ussless) B~ ok [cancel J[mopy |[tHep |

To create a control, you must create an extended attribute (see Extended Attributes (Profile) [page 48]) and then
add it to the form (see Adding Extended Attributes and Other Controls to Your Form [page 69]). You can organize
your controls by using horizontal and vertical layouts, dividers, spacers, free text and groupboxes. PowerDesigner
will automatically add appropriate supplementary tools to your controls, such as the Create, Delete, Select, and
Propeties tools to the right of an object control.

To create the controls shown:

Table 30:

Control Requires

Single-line text Select the String, Password (masks entered values), or Float, Hex, or Integer data type for
your attribute.

Read-only Select any data type, check the Computed and Read only (Get method) options and enter the neces-
sary script to calculate the value that will be displayed.

Multi-line rich text Select the Text data type and the RTF text format. You can select a number of other text formats to
display various types of code or plain text.

Checkbox Select the Boolean data type. Use the Default value field to specify whether the checkbox should
be selected or not by default.

Radio Buttons Select any appropriate data type, enter a list of values, and select the Complete option. When adding
your attribute to the form, select either horizontal or vertical radio buttons from the Display option.

File, Date, or Color Select the File, Date, or Color data type.

Picker

Customizing and Extending PowerDesigner
74 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Control

Requires

Choose value from list
or Enter or choose
value

Select any appropriate data type and enter a list of values to allow the user to select a value from the
list or enter their own value. Select the Complete option to force the user to select from the list.

Choose object

Select the Object data type and then select an object type and optionally an object stereotype (see
Linking Objects Through Extended Attributes [page 57]).

2.14.3 Example: Creating a Property Sheet Tab

In this example, we will create a new property tab for the EAM Person metaclass to display extended attributes we
define to store personal information.

Procedure

1. Create a new extension file (see Creating an Extension File [page 19]) in an EAM, add the Person metaclass

(see Metaclasses (Profile) [page 39]), and define five extended attributes (see Extended Attributes (Profile)
[page 48]) to contain home contact details:

] Extension Properties (Acme Corporation) ” =10l x|
General |
Ld = B - |Organogram:: ProfilesPerzon\E stended Attibutes\Home Address | G- -~ B ah
ac
QOrganogran
- G |
) Generation EHErs
% ﬁ:aot::lr;gs Mame: |Hnme &ddress
[ﬁ Shared Label: |
B3 Person .
EHEJ Estended Attributes By ﬂ
Home City
1% Home Country
%9 Home Telephane
(%) Home Zip LI

Data bype: I[String] ﬂ|_ﬂ|@

[~ Computed: % Bead/wiite [Get+Set methods| " Bead only [Get method)
Default walue: I j _I Template [

Lizt of values: | @ Complete [
Edit methad: &% <None> =2l

0k I Cancel | Apply | Help

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 75

2. Right-click the Person metaclass and select | New » Form 3, enter Personal Details inthe Name field,
select Property Tab inthe Type list, and click the Add Attribute tool to select all the new extended attributes
for inclusion in the form:

I Add Attributes x|

= = A

I ame | Data Type | Ay ailability Contest | Comment |
[Home Address [String] Perzon
[*3 Hame City [Stritg) Person
(> Home Country [String) Person
[* Home Telephone [Sting] Perzon
[*3 Home Zip [Stririg) Person

I Extended attributes £ &ttributes [/

Selected object{s]: 5/5
k. I Cancel | Help |

3. Click OK to add the attributes to the form, and arrange them in a group box, using horizontal layouts to align
them neatly. Here, I'm using the Label field to overide the default name of the attribute in the form for brevity:

Customizing and Extending PowerDesigner
76 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

ﬁ] Extension Properties {Acme Corporation)

General |

- - |Drganogram::F'ru:ufiIe\F‘erson'\Forms'\F‘ersonalDetails

L)f] Organogram
L7 Generation
23 Settings
=) Profile
{b Shared
EI:. Perzon
B3 Extended Attributes
{3 Home Address
[Home City
L)ﬂ Haorne Country
{3 Home Telephone
H L3 Home Zip
Ellji'l Forms
E Perzonal Details

Name: |Per$nnal Details
Lahel: I
Comment; ;I
Help file: |
Type: IF'ropert_l,J Tah > | ¥ Add to favorite tabs Preview |
Farrm |><M|_ |
@ MO *R+EEids A — I3 X
=] Fam ; .
[™)] Personal Information Attribute: IHC"'“E City
ES) Hor!'ne Address Label IEit_l,J
*a Horizontall ayout] -
ESE Home City Data Type: I[St”ng]
(3 Home Zip Cormment;

o Honizontallayouts
% Home Country
Y Home Telephone

=

[V Show Hidden Attribut

Minimum Size [Chars): |1

¥ Haorizontal Fesize

=101 %]

0k I Cancel | Apply | Help

4. Click OK to save your changes and return to the model. When you next open the property sheet of a person, a
new Personal Details tab is available containing the extended attributes:

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

77

.*_ Person Properties - James Jones (james_jones) - |EI|E|

Generall Foles Perzonal Details | Maotes I

Perzonal Infarmation

Horne address: |Eelulisla i ers =yt
City: | Chippingham Zip: |16 G4l
Courtry: IUK Tel IDEDE-EEE-EE?E

Mare > | :'g - k. I Cancel Apply Help

2.14.4 Example: Including a Form in a Form

In this example, we will replace the General tab of the EAM Person metaclass by a form which includes properties
from the person and from the site to which she is assigned by including a form defined on the Site metaclass as a
read-only control in a form defined on the Person metaclass.

Context

This example builds on the extension file created in Example: Creating a Property Sheet Tab [page 75].

Procedure

1. Add the site metaclass and create a form called Site Address. Select Property Tab from the Type list
and unselect the Add to favorite tabs option (as we do not want this form, which duplicates standard site
properties displayed in site property sheets).

2. Populate the form with standard attributes to display the complete address of the site:

Customizing and Extending PowerDesigner
78 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

ﬁ] Extension Properties {Acme Corporation)

General |

- - |Drganogram::Prnfile\Site\Fnrms\SiteAddress

=101 %]

L)f] Organogram
L7 Generation
23 Settings
=) Profile

{b Shared

I_'—_|:. Perzon
B3 Extended Attibutes
{3 Home Address
[Home City
L)ﬂ Haorne Country
{3 Home Telephone

E L3 Home Zip
Elljﬂ Farms

- Site
-5 Forme

E Contact Details
E Personal Details

-[Z] Site Address

Name: |Site Address

Labet |

Camment: |
[

Help file: |

Tvpe: |Property Tab w| T Add to favorite tabs Ereview |

Farm |><ML |

@@ MO EEH A — I X

. HorizontalLapout
[E) City
[F) FipCode

[EE) Country

[Phone

Attribuite: W
Label: If—\ddress

Minimum Size [Chars]: I'l—
Minimurn Line Mumber: |3—

¥ Huorizontal Resize

v “ertical Fesize

o]

Cancel | Apply | Help

3. Create aform under the Person metaclass, select Replace General tab from the Type list, and change
the name to Contact Details.

4. Delete unwanted attributes from the list, and arrange the remaining attributes you want to display, including

the site attribute (which is of type Object, and which will enable us to pull in the appropriate properties
from the associated site form) using horizontal and vertical layouts.

5. Click the Include Another Form tool, select site in the Attribute field, and enter Site Address inthe Form

name field. Select the Read-Only check box to prevent editing of the included form from the person's property

sheet:

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

79

ﬁ] Extension Properties (Acme Corporation)

General |

=18l]

- - |Drganngram::F'r0fiIe\Permn\Fnrms\ContactDetails

L>_<] QOrganogranm

"0 Generation Mame: ID:untactDetaiIs
72 Settings Labet |
Ehi‘l Profile
@ Shared Commert: ﬂ
- & Person |-
Elljﬂ Extended Abtributes .
i e Home Address Help file: I
-)
g EE:Z E:;intry Type: IFlepIac:e General tab j Preview |
,_}ﬂ Horme Telephone Farrn |:><M|_ |
E [Home Zip
=2 Foms EE MO EEE A L5
5] EDntactDetaiI.s =] Fam
S =] Personal Details 2. Horizontall ayout] I arne: ISite Address
= i
ore () Mame btribute: ISite 'l
=+ Foms) JobTitle :
i [2] Gite Address 2. HorizontalL ayout? Form narne: ISItB Addiess "l
(] Emai Mimirnum Size [Chars]: |3
[Telephone
[Manager Finimum Line Mumber: I'I
%ﬂ ¥ Harizontal Resize
= V¥ ertical Resize
[Read-Only
0k I Cancel | Apply | Help

6. Click OK to save the extensions, and return to your model. When you next open the property sheet of a
person, the General tab is replaced by the custom Contact Details tab, and when the person is assigned to a
site, the site's address details are displayed as read-only in the lower part of the form:

80

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

.*_ Person Properties - James Jones (james_jones)

Contact Details | Falez I Perzanal Detailsl Mates I

=10l |

lames Jones

Hame:

Jab title: |Marketing Executive

Ermnail: Iiinnes@acme.cum

Telephone: |0108-555-5675

- .
Manager: I e Alizon Anderson

3 | ET

Site: I European Headgquarters

3 | e

Addrezs: IE? Piccadily

Ciby: ILl:unu:h:un

Zip code: |[EC1 3FR

Couribry: IUK

Phone: |0108-555-5000

Cancel

More 35 | = - ak. I

Apply Help

2.14.5 Example: Opening a Dialog from a Property Sheet

In this example, we will add a button to a property sheet tab, to open a dialog box, allowing you to enter additional

personal details for a person.

Context

This example builds on the extension file developed in Example: Including a Form in a Form [page 78].

Procedure

1. Openthe Personal Details form under the Person metaclass, and select Dialog Box in the Type field,

to transform it from a property sheet tab into an independent dialog:

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

81

ﬁ] Extension Properties (Acme Corporation) _ |EI|£|
General |
v ™ |Drganngram::F'r0fiIe\Permn\Fnrms\PersonalDetails j (S F‘ff it;-e\
Qrganogram N _ 5 T
{E3) Generation Mame: | erzonal Details
@ Settings Label I
A2 Profile
@ Shared Camment: ﬂ
EI; Perzon LI
El{a Extended Attributes .
[Home Address Help file: |
-3 Home City Tue: - .
i e |
L}ﬂ Hame Country Tvp IDlaIUg Box j Praview
[Haome Telephane Farm |><ML |

L3 Hame Zip
=55 Forms
: 5] Contact Details
=] Personal Details
23 Methods
Ly ShowPersonalD etails
B2 Site
=) Forms
L. [F] Site Address

DEMOXEEDEHEEEY A - DB X

=] Form
[™] Personal Information

[Home Address

o Horizantall apout]
[Home City
[Home Zip

Ao Horizontallapout:
[Home Courtry
[ESEH ome Telephone

Attribute:
Label:
Drata Tope:

Carnment:

Minirnurn Size [Chars]: |1

IH ome Telephone
I[String]

=

v Show Hidden Attribut

¥ Horizontal Fesize

o]

Cancel |

Al | Help |

2. Right-click the Person metaclass and select | New » Method . Enter the name ShowPersonalDetails,
and then click the Method Script tab and enter the following script:

Sub %$Method% (ob7j)
A\l
Dim dlg
Set dlg =

If not dlg is Nothing Then

dlg.ShowDialog ()
End If
End Sub

Show custom dialog for advanced extended attributes

obj.CreateCustomDialog ("$CurrentTargetCode%.Personal Details")

3. Selectthe Contact Details form, and click the Add Method Push Button tool, select the
ShowPersonalDetails method, and then click OK to add it to the form. Here, | use a horizontal layout and
spacer to align the button with the right edge of the form:

82 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

ﬁ] Extension Properties {(Acme Corporation)

General |

- - IDrganngram::F'rofiIe\Persnn\Fnrms\ContactDetails

=] Contact Details

]
-égaan;?;?::im MHame: ID:ntact Detalz
@ Seltingsz Label: I
@ Profile:
@ Shared Carnrent: ;I
L——_I; Person LI
L——_I{a Extended Attibutes .
[Hame Address Help file: |
] i
é Ezmz Egintry Tupe: IFlepIac:e General tab ﬂ Preview |
Lbﬂ Home Telephane Farm |><M|_ |
“[¥9 Home Zip » _ .
H"@FDII‘I‘IS L@@UI_:I":“ *E@ﬁA ~ La X

. HonzontalLapoutl -
. =] Personal Detalls [Mame - Methad: |Sh0wF’ersonaIDetail$
=02 Methods & JobTite .
i ; Mame: |F'er$nnal...
----- &% ShowPersonall etails 2. Harizontall ayaut?
H..ge [Email Label: I
E-2) Forms I3 Teleph
- phone :
L[5 Site Address I8 Managst Camment:
[Site
2] Site Address
- HorizontalLayout3
r Enzon Aol ™ Harizontal Resize
iy =1 | Display: ITe:-:t j
L« > —
0k I Cancel | Ay | Help |
4. Enter Personal. .. inthe Label field, and then click OK to save your changes and return to the model. Now

when you open the property sheet of a person, the Contact Details tab contains a Personal... button which
opens the Personal Information dialog:

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

83

!‘_ Person Properties - James Jones (j _ | |:||£|

Contact Details I Rales | Maotes I

Mame: [James Jones o] x|
Ermnail Iiiclnes@an:me.mm Perzonal Infarmation

b anager: I ; Alizon Anderzon Home address: IEEI Qldbury Gardens

Site: I European Headquart City: IEhippingham Zip: ISWT B 3aL

Address: IE? Ficcadilly Cortry: ILIK— Home telephone: Im

City: ILDndu:un

Cotintry: ILIK

Phone: [0108-555-5000 S T

Perzonal... |
bare > | :§|' - k. Cancel Apply | Help |

2.15 Custom Symbols (Profile)

Custom symbols modify the appearance of object symbols in diagrams along with the content displayed on them.
You can choose to enforce certain aspects of the symbol format and content, while allowing users some liberty to
change others.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select | New » Custom Symbol 1.

Customizing and Extending PowerDesigner
84 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

4| Extended Model Definition Properties [DObjectOrientedModel 1)

General |
G v D IE:-:tendedDefinitinn_1::F'ru:nfile'\EIass"sEustDm Symbaol n - F&* ?_;’B
ExtendedDefinition_1
r_jl EEE:EH?;: - Marne: Cuiztom Symbol
Ell:l Profile Carnrnent: il
(] Shared

E Azgociationdd apping
E BuzinezsRule
Eg Class

: |:| Sterentypes

#-B Clasztapping

#-B Operationtdapping

Type: Predefined Symbal - Mame: 30 Rectangle

— Default zsize (inch)
Width: ID.E Height: IEI.?

— Preview

D efault | Modify. .. |

0k I Cancel Appl | Help |

2. Specify a default Width and Height for the symbol and then click the Modify button to open the Symbol
Format dialog, and set appropriate properties on the various tabs.

1 Note

If you customize the line style and arrows of a link symbol (such as a PDM reference), your styles will
override those selected in the Display Preferences dialog, and may cause confusion and inconsistency in
the model. To ensure coherence in a model governed by a notation, select Notation for the Style and

Arrows properties on the Line Style tab.

For more information on the Symbol Format dialog (including the custom symbol options that let you control
the default format options for the symbol, and whether users can edit them, on a per-tab basis) see Core
Features Guide > Modeling with PowerDesigner > Diagrams, Matrices, and Symbols > Symbols > Symbol

Format Properties.

3. Click OK to return to the resource editor and view your changes in the Preview field.

4. Click Apply to save your changes.

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 85

2.16 Custom Checks (Profile)

Custom checks define additional rules to validate the content of your models. The logic of the check is defined
using VBScript. Custom checks appear alongside standard checks in the Check Model dialog.

Context

Custom checks appear with standard model checks in the Check Model Parameters dialog (see Core Features
Guide > Modeling with PowerDesigner > Objects > Checking Models).

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select [New » Custom Check 1.

2. Enter the following properties as appropriate:

Table 31:
Parameter Description
Name Specifies the name of the custom check, which is displayed under the selected object cate-
gory in the Check Model Parameters dialog. This name is also used (concatenated) in the
check function name to uniquely identify it.
Comment Provides a description of the custom check.
Help Message Specifies text to display in the message box that opens when the user right-clicks the

check and selects Help.

Output message

Specifies text to display in the Output window during check execution.

Default severity

Specifies whether the check is designated by default as an error (major problem that stops
generation) or a warning (minor problem or just recommendation).

Execute the check by default

Specifies that the check is selected by default in the Check Model Parameters dialog.

Enable automatic correction

Specifies that an autofix is available for the check (see Example: PDM Autofix [page 88]).

Execute the automatic cor-
rection by default

Specifies that the autofix is executed by default.

3. Click the Check Script tab and enter your script (see Example: PDM Custom Check [page 88]. You can
access shared library functions and static attributes defined for reuse in the resource file from the Global
Script tab (see Global Script (Profile) [page 126]).

Customizing and Extending PowerDesigner

86 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Eil Extended Model Definition Properties [For All Models) _ O] <]
General |
R Icustom_ckeck::Profile\lndex\[ﬁustom Checks\ndex_type_verification E - "}i? Q_E‘B
custom_ckeck . o :
[Generation General Check Script IAulole Scnptl Global Scrlptl
E'"Dgfgeh ; BH-B-HS# 4 BE o Lo
are
#-B Column Function 4Check${obj) |
#-B CubeMapping i
#-B DimensionMapping ! cannot create an LF, HG, CMP, or HNG index for Varchar(zZ55] column
. L
#--B FactMapping
=B Index Dim c 'tewporary index coluwn
ENE] Custom Checks Dim col 'temporary column
: T i iti
B Index_type_verification D;E E;S;Dion
B NamedDbject %Check§= True
Eijg iaaem . if obj.type = "LF" or obj.type = "HG”" or obj.type = "CHMP” or obj.tCyp
[¥]- abletd apping

for each ¢ in obj.indexcolunns
set col = c.column

position = InStr{col.datatype,” (™M)
if position <> 0 then
DT col = lefti{col.datatype, position -1)

elze
DT _col = col.datatype

end if

if ucase (DT col) = "VARCHAR" and caol.length > Z55 then
output "Table " & col.parent.name & " Column " & col.na
%Check% = False

end if

next —
end if

End Function

Kl _>ILI

ak I Cancel | Anply | Help |

4. If you want to define an autofix, click the Autofix Script tab and enter your script (see Example: PDM Autofix
[page 88].

5. Click Apply to save your changes.

All custom checks defined in any resource files attached to the model are merged and all the functions for all
the custom checks are appended to build one single script. You custom checks are displayed in the Check
Model Parameters dialog box alongside the standard model checks. If there are errors in your custom check
scripts, the user will be prompted with the following options:

o Ignore- Skip the problematic script and continue with the other checks.

o Ignore All - Skip this and any future scripts with problems and continue with the other checks.

o Abort - Stop the model checking.

o Debug - Stop the model checking and open the Resource Editor on the script line with the problem.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 87

2.16.1 Example: PDM Custom Check

You enter the script of the custom check in the Check Script tab using VBScript. In this example, we will write a
script to verify that SAP® 1Q indexes of type HG, HNG, CMP, or LF are not linked with columns with a data type of
VARCHAR with a length higher than 255.

The scriptis initialized with the following line, which must not be altered:
Function %Check% (obj)

At run-time the variable $Check% is replaced by concatenating the names of the resource file, metaclass, any
stereotypes or criteria, and the name of the check itself from the General tab, with any spaces replaced by an
underscore. The parameter obj contains the object being checked.

We begin by defining a certain number of variables after the default function definition:

Dim ¢ 'temporary index column
Dim col 'temporary column

Dim position

Dim DT col

Next, we enter the function body, which starts by setting the $Check% to true (meaning that the object passes the
test) and then iterates over each of the columns associated with the index and tests their datatype. If a column
has a varchar longer than 255, the script outputs a message and sets the check to false (the object fails the test:

%$Check%= True

if obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type ="HNG" then
for each ¢ in obj.indexcolumns
set col = c.column

position = InStr(col.datatype," (")
if position <> 0 then
DT col = left(col.datatype, position -1)

else
DT col = col.datatype
end if
if ucase (DT _col) = "VARCHAR" and col.length > 255 then
output "Table " & col.parent.name & " Column " & col.name & " : Data type is

not compatible with Index " & obj.name & " type " & obj.type
%Check% = False
end 1if

For more information about using VBScript in PowerDesigner, see Scripting PowerDesigner [page 328].

2.16.2 Example: PDM Autofix

If the custom check you have defined supports an automatic correction, you enter its script on the Autofix Script
tab using VBScript. In this example, we will write a script to fix an IQ index linked with columns with an invalid data
type.

The script is initialized with the following line, which must not be altered:

Function $Fix% (obj, outmsg)

Customizing and Extending PowerDesigner
88 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

At run-time the variable $Fix% is replaced by the name of the fix. The parameter ob5 contains the object being
checked and outmsg, the message to be output.

We begin by defining a certain number of variables after the default function definition:

Dim ¢ 'temporary index column
Dim col 'temporary column

Dim position

Dim DT col

Next, we enter the function body, which starts by setting the $Fix% to false (meaning that it does nothing) and
then iterates over each of the columns associated with the index and tests their datatype. If a column has a
varchar longer than 255, the script outputs a message, deletes the column from the collection of columns
associated with the index, and sets the fix to true (it has made a correction):

$Fix% = False

If obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type ="HNG" Then
For Each ¢ In obj.IndexColumns
Set col = c.column

position = InStr(col.datatype," (")
If position <> 0 Then
DT col = Left(col.datatype, position -1)
Else
DT col = col.datatype
End If
If (Ucase(DT col) = "VARCHAR") And (col.length > 255) Then
outmsg = "Automatic correction has removed column " & col.Name & " from index."
c.Delete
$Fix% = True
End If
Next
End If

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 89

i Extended Model Definition Properties [For All Models)

General I

& Istom_ckeck::meile\lndeH'\Custom Checks\Indes_tppe_verification - %4

B

I@ custam_ckeck

[Generation

23 Profile

----- (L1 Shared

----- B Column

#~B Cubetdapping

#-B Dimensiont apping

#-B FactMapping

=B Index

E|D Cuzstom Checks
[Index_type_veiification

----- B MamedObject

#-B Table

#-B Tabletapping

Generall Check Script Autofiz Script | GIDbaIScriptI
E-Bf-HESd BB < o Lnkcll

KN _'ILI

' Mytomatic correction: cannot create an LF, HG, CHP, or HNG index £
Dim 'temporary index column
Dim col 'temporary column
Dim position
Dim DT_col
(Fix% = False
If obj.type = "LF" or obj.type = "HG' or obj.type = "CHMP" or obj.typ
For Each c In obj.IndexColumns

Jet col = c.column

position = Inftr{col.datatype,” (")

If position <> 0 Then

DT_cal = Left{col.datatype, pozition -1)

Else
DT _caol = col.datatype
End If
It (Ucase(DT_col) = "VARCHAR™) And (col.length > 255) Then
outnsy = "sutomatic correction has removed column " o& col.N
c.Delete
%Fix% = True
End If
Hext
End If

End Function

(0] 4 I Cancel Lppiy | Help |

2.17 Event Handlers (Profile)

Event handlers define validation rules or other scripts to run when an event occurs on an object. The logic of the
event handler is defined using VBScript. Criteria do not support event handlers.

Procedure

1. Right-click a metaclass or stereotype in the Profile category and select |» New » Event Handler ito opena
selection box, listing the available types of event handlers:

Customizing and Extending PowerDesigner

90 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Table 32:
Event handler Description
CanCreate Implements a validation rule to prevent objects from being created in an invalid context. For
example, in a BPM for ebXML, a process with a Business Transactions stereotype can only be
created under a process with a Binary Collaboration stereotype. The script of the CanCreate
event handler associated with the Business Transaction process stereotype is the following:
Function %CanCreate% (parent)
if parent is Nothing or
parent.IsKindOf (PdBpm.Cls Process) then
$CanCreate% = False
else
%$CanCreate% = True
end if
End Function
If the event handler returns True on a stereotype, then you can use the custom tool to create
the stereotyped object and the stereotype is available in the Stereotype list on the object
property sheet. If it returns True on a metaclass, then you can create the object from the
Toolbox, from the Browser or in a list.
1 Note
CanCreate event handlers are ignored during model import or reverse-engineering,
since they could modify the model and make it diverge from the source.
OnDelete Controls what will happen after the deletion of an object.
1 Note
This event handler cannot prevent the deletion of an object.

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 91

92

Event handler

Initialize

Description

Allows you to insert actions after the creation of an object with a predefined template. For ex-
ample, in a BPM, a Business Transaction must be a composite process with a predefined sub-
graph. The script of the Initialize event handler associated with the Business Transaction
process stereotype contains all the functions needed to create the sub-graph. The following
script fragment is from the Initialize event handler for a Business Transaction.

' Search for an existing requesting activity
symbol
Dim RegSym
Set RegSym = Nothing
If Not RegBizAct is Nothing Then
If RegBizAct.Symbols.Count > 0 Then
Set ReqgSym = RegBizAct.Symbols.Item(0)
End If
End If

' Create a requesting activity if not found
If RegBizAct is Nothing Then
Set RegBizAct =
BizTrans.Processes.CreateNew
RegBizAct.Stereotype =
"RequestingBusinessActivity"
RegBizAct.Name = "Request"
End If

If the event handler returns True on a stereotype, then the initialization script will be launched
whenever the stereotype is assigned, either with a custom tool in the Toolbox, or from the ob-
ject property sheet. If it returns True on a metaclass, then it will be launched when you create
a new object from the Toolbox, from the Browser, in alist or in a property sheet. If it returns
true on a model, then it will be launched when you assign a target (DBMS or object, process,
or schema language) to the model at creation time, when you change the target of the model,
or when you attach an extension to the model.

Validate

Validates changes to object properties or triggers cascade updates when you change tabs or
click OK or Apply in an object property sheet. You can define an error message to appear
when the condition is not satisfied by filling the message variable and setting the
%Validate% variable to False.

In this example, the event handler verifies that a comment is added to the definition of an ob-
ject:

Function %Validate% (obj, ByRef message)

if obj.comment = "" then

$Validate$ = False

message = "Comment cannot be empty"
else

%Validate% = True
end if

End Function

Customizing and Extending PowerDesigner

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Event handler

CanLinkKind

Description

[link objects] Validates the kind and stereotype of the objects that can be linked together as
the source and destination extremities when you create a link with a Toolbox tool or modify
link ends in a property sheet. The sourceStereotype anddestinationStereotype

parameters are optional.

In this example, the source of the extended link must be a start object:

Function %CanLinkKind$% (sourceKind, sourceStereotype,
destinationKind,
destinationStereotype)
if sourceKind = cls Start Then
%$CanLinkKind% = True
end if
End Function

OnModelOpen, OnModel-
Save, and OnModelClose

[models] Run immediately after a model is opened, saved, or closed.

OnlanguageChangeRe-
quest, OnLanguage-
Changing, and OnLangua-
geChanged

[models] Run immediately:
o Before the model's DBMS or language definition file is changed. If the event handler re-
turns false, then the language change is canceled.
o After the language change, but before any transformations are applied to objects to
make them conform with the new language definition.
o After the model's DBMS or language definition file is changed and the object transforma-
tions are applied.

OnNewFromTemplate

[models] Runs immediately after a model or a project is created from a model or project tem-
plate.

GetObjectLabel, SetOb-
jectLabel, GetObjectTool-

tip

Allow you to override the standard label displayed on symbols and in the Browser. For exam-
ple, the following script prefaces the displayed name of an object with CORE : if the boolean

extended attribute Core is selected:

Function %$GetObjectLabel% (ob7j)

If obj.GetExtendedAttribute ("Core") = true then

%$GetObjectLabel% = "CORE: " & obj.name
Else

%GetObjectLabel% = obj.name

End if

End Function

BeforeDatabaseGenerate,

AfterDatabaseGenerate,
BeforeDatabaseRever-
seEngineer, and AfterDa-
tabaseReverseEngineer

[PDM models] Run immediately before or after generating or reverse-engineering a database
(see Adding Scripts Before or After Generation and Reverse Engineering [page 1547).

GetEstimatedSize

[PDM only] Runs when the Estimate Database Size mechanic is called (see Modifying the Es-
timate Database Size Mechanism [page 220]).

2. Select one or more event handlers and click OK to add them.

3. Enter aname and comment to identify and document the event handler.

Customizing and Extending PowerDesigner

Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 93

4. Click the Event Handler Script tab and enter a script to define the event handler. You can access shared library
functions and static attributes defined for reuse in the resource file from the Global Script tab (see Global

Script (Profile) [page 126]).

@' Process Language Properties (For All Models)

General |
S =T Iebb{ML1_Dd::Prnfile\Prncess\Stereotypes\EinaryEnIIabnratinn\E\-'entHandlers\CanEreate n - M '?";"B
E-B Process | - :
(2 Custom Checks General Event Handler Seript | Glabal Seript |
[:l Generated Files - EE ﬂl X El Vo) nl % Ln8. Cold

=7 Stereotypes

=-EH AbstractProcess

[Extended Attributes
- Templates

=-EF BinaryCollaboration

Function %CanCreateX (parent) ;I

if parent is Nothing or parent.IsKind0OfPdEpm.
3CanCreate% = False

[Custam Checks els?c c s o T
£~ Event Handlers end-si:n reaney = True
-&3 CanCreate
[culi
&3 Initialize End Funcrion

[Extended &ttributes

[Templates
=2 BusinessAction
[Custom Checks

[Extended Attributes -
-7 Templates q I I _>|_I

0k I Cancel Apply | Help |

=EH BusinessTransaction j
R == T s T Y WY TR T

5. Click Apply to save your changes.

2.17.1 Example: Setting Default Property Values

You can set a default value for most object properties viaan Initialize event handler.

Procedure

1. Add the appropriate metaclass to your profile (see Metaclasses (Profile) [page 39]), and create an event
handler of type Initialize underit.
2. Click the Event Handler Script tab and modify the script to specify default values for one or more properties in

the form:

obj.<PropertyName> = <Value>

Customizing and Extending PowerDesigner
94 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

For example, the following script sets the stereotype of a CDM inheritance to MyInheritance and its
Generate children property to the value of Inherit only primary attributes:

Function %$Initialize% (obj)

obj.Stereotype = "MyInheritance"
obj.InheritAll = False
$Initialize% = True

End Function

3. Click OK to save your changes and close the resource editor.

From now on, when you create an inheritance in your model, these properties will be set to the specified
default values.

2.18 Methods (Profile)

Methods are written in VBScript and perform actions on objects when they are invoked by other extensions, such

as menu items or form buttons.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select | New » Method 3.

2. Enter the following properties as appropriate:

Table 33:

Property Description

Name Specifies the name of the method.

Comment Provides additional information about the method.

3. Click the Method Script tab, and enter the VBscript. If appropriate, you can reuse functions on the Global
Script tab.

For more information on defining a script and using the Global Script tab, see Example: PDM Custom Check

[page 88] and Global Script (Profile) [page 126].

The following example, created under the Class metaclass, converts classes into interfaces by copying basic

class properties and operations, deleting the class (to avoid namespace problems), and creating the new
interface.

Sub $Mthd$% (ob7j)

' Convert class to interface

' Copy class basic properties

Dim Folder, Intf, ClassName, ClassCode
Set Folder = obj.Parent

Set Intf = Folder.Interfaces.CreateNew

ClassName = obj.Name
ClassCode = obj.Code
Intf.Comment = obj.Comment

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

95

Dim Op

Copy class operations

For Each Op In obj.Operations
|l

Output Op.Name

Next

Intf.Name
Intf.Code

End Sub

1 Note

Destroy class

obj.Delete

Rename interface to saved name
ClassName

ClassCode

This script does not deal with other class properties, or with interface display, but a method can be used to
launch a custom dialog box to ask for end-user input before performing its action (see Example: Opening a
Dialog Box from a Menu [page 98]).

4. Click Apply to save your changes.

2.19 Menus (Profile)

Menus specify commands to appear in the standard PowerDesigner File, Tools, and Help menus or in contextual

menus.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select |» New » Menu 3.
2. Enter the following properties as appropriate:

Table 34:
Property Description
Name Specifies the internal name of the menu. This name will not appear in the menu
Comment Provides a description of the menu.
Customizing and Extending PowerDesigner
96 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Property

Location

Description

[model and diagram only] Specifies where the menu will be displayed. You can choose between:
o File > Export menu

o Help menu

o Object Contextual Menu

o Tools menu

Menus created on other metaclasses are only available on the contextual menu, and do not display
a Location field.

3. Use the tools on the Menu sub-tab to create the items in your menu:

Table 35:

Tool

&

Function

Add Command - Opens a selection dialog listing methods (see Methods (Profile) [page 95]) and transforma-
tions (see Transformations (Profile) [page 107]) defined in the current metaclass and its parents to add to
the menu as commands. Select one or more and click OK.

The items are added to your menu in the format: <MenuEntry> (<Method/

TransformationName>)

You can modify the <MenuEntry> (and define a shortcut key by adding an ampersand before the shortkey
letter) but you must not edit the <Method/TransformationName>.

1 Note

If you modify the name of a method or transformation, you must update any commands using the method
or transformation by hand, because the name is not automatically synchronized. You can use the Replace
in Items tool to locate and update these commands.

Add Separator -Creates a menu separator under the selected item.

Add Submenu - Creates a submenu under the selected item.

Delete - Deletes the selected item.

You can reorder items in the menu tree by dragging and dropping them. To place an item inside a submenu
item, drop it onto the submenu.

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 97

i Extended Model Definition Properties [PhyzsicalD ataModel 2]

Eeneral |

e e = - IEKTENDEDDEFINITIDN_'I::F'ru:ufile'xTable\MenusHManage‘-.-’iews H- % %%

] ExtendedDefinition_1 N
i1 Generation M arne: anage Views

E||:| gjﬁle Comrmernt; :I
b Shared

=B Table
EI|:| Methods ;I
{% Createtiews
gl Organizehiews
-] Menus

b eriu |><|~.-1|_ I
ah = =& K
I% Menu

{.f,‘,"g iCreate Yiews [CreateViews];
@ Orqanize Yiews [Organizetfisws]

] I Cancel Apply Help

4. [optional] Click the XML sub-tab to review the XML generated from the Menu sub-tab.
5. Click Apply to save your changes.

2.19.1 Example: Opening a Dialog Box from a Menu

In this example, we will create a menu command to export object properties to an XML file via a dialog box.

Procedure

1. Create a new extension file (see Creating an Extension File [page 19]) in a PDM and add the Table metaclass
(see Metaclasses (Profile) [page 39]).

2. Right-click the Table metaclass and select | New ¥ Form .. Enter Export in the Name field, and select
Dialog Box from the Type list.

Customizing and Extending PowerDesigner
98 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

3. Click the Edit Field tool to add an edit field control, and call it Filename.

4. Right-click the Table metaclass and select [New » Method 3. Enter Export in the Name field, click the
Method Script tab and enter the following code:

Sub %$Method% (ob7j)

Exports an object to a file

Create a dialog to input the export file name

Dim dlg

Set dlg = obj.CreateCustomDialog ("%$CurrentTargetCode%.Export")

If not dlg is Nothing Then
' Initialize filename control value
dlg.SetValue "Filename", "c:\temp\MyFile.xml"
' Show dialog
If dlg.ShowDialog () Then
' Retrieve customer value for filename control
Dim filename
filename = dlg.GetValue ("Filename")
' Process the export algorithm...
(Actual export code not included in this example)
Output "Exporting object " + obj.Name + " to file " + filename

End If

dlg.Delete

Set dlg = Nothing

End If
End Sub

Free dialog object

5. Right-click the Table metaclass and select [New » Menu 3. Enter Export in the Name field, and then click
the Add Command tool and select the Export method:

ﬁ] Extension Properties {Data Warehouse) — |EI|£|

General |

- - IE:-:|:u:urt::F'rofile\Table\Menu&\E:-:pu:urt

L>_<j Export

{h Generation Marne: E sport]
=10 Profile Camment: -
-3 Shared
Emfj Table
E4ﬁijms .:J
E E xport
E4C5) Menus Lacation:
% EHDD[[‘
EHB Methods ey IXML I
& Export ﬂ =S =
=] Meru
&35 Export [Fxpart)

Ok I Cancel Lpply Help

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 99

6. Click OK to save your changes and return to your model. When you next right-click a table in a diagram or the
browser, the Export command is available in the contextual menu.

2.20 Templates (Profile)

GTL templates extract text from PowerDesigner property values for use in generated files or other contexts.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category (or the Profile/Shared category, if
the template applies to all metaclasses) and select [New » Template .

2. Enter aname for the template. You should not use spaces in the name and, by convention, templates are
named in headless camelcase (for example myTemplate).

3. [optional] Enter a comment to explain the use of the template.
4. Enter GTL code (see Customizing Generation with GTL [page 268]) in the text box.

In this example, myTemplate is defined on the Class metaclass, and will generate the name of the class
followed by a list of its attributes:

=)

Lﬁ Extension Properties (myOOM) =
General

* = myBEsdension::ProfileClass™ Templates my Template - "% - - ﬁ'&? a'i'é (e

M arne: my Template

Comment: -

-

B F-HdI3f| B 90| 0@

Class Name: %lame: -
.foreach_item{Attributes)

\n\tiName:
.DEXL

ok [Ganeel [[somy [e

Customizing and Extending PowerDesigner
100 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

2.21 Generated Files (Profile)

Generated files assemble GTL templates for generation as files or for previewing on the object property sheet

Preview tab.

Procedure

1. Right-click a metaclass, stereotype, or criterion in the Profile category and select |» New j Generated File 3.

Only objects, such as tables or classes, support file generation, but you can still create generated files for sub-
objects, such as columns and attributes, to preview code generated for them on their property sheet Preview

tab.

2. Enter the following properties as appropriate:

Table 36:

Property Description

Name Specifies a name for the generated file item in the resource editor.

If an extension attached to the model contains a generated file name identical to one defined in the
main resource file, then only the extension generated file will be generated.

File Name Specifies the name of the file that will be generated. This field can contain GTL variables. For ex-
ample, to generate an XML file with the code of the object for its name, you would enter $code
% .xml.

If you leave this field empty, then no file will be generated, but you can view the code produced in
the object's Preview tab.

If this field contains a recognized extension, the code is displayed with the corresponding language
editor and syntactic coloring.

Type Specifies the type of file to provide appropriate syntax coloring in the Preview window.

Encoding Specifies the encoding format for the file. Click the ellipsis tool to the right of the field to choose an
alternate encoding from the Text Output Encoding Format dialog, where you can specify the fol-
lowing options:

o Encoding - Encoding format of the generated file
o Abort on character loss - Specifies to stop generation if characters cannot be identified and
are to be lost in current encoding

Comment Specifies additional information about the generated file.

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 101

Property Description

Use package hierar- | Specifies that the package hierarchy should be used to generate a hierarchy of file directories.
chy as file path

3. Enter GTL code (see Customizing Generation with GTL [page 268]) or the name of a template to populate the
file in the text zone.

In the following example, a generated file is defined for OOM classes. A file will be generated for each class in
the model with a name derived from the class $Name%, and containing the contents generated from the
smyTemplate% template (see Templates (Profile) [page 100]):

myExdension Marne: i
{3 Generation i i
Erlf:l Profile File name: Class_%MName¥ bt Tope: | bt -
B Shared
EI@ Class Encoding: AMSI (Active Code Page) _I
EHE:’ e Comment: -
e myFile B
=) Templates
b @ my Template =

|lze package hierarchy az file path
B-F-adoalsanlrese

imyTemplate$ -

[0K J[Cancel J[Aoy |[Hep |

4. Click OK to save your changes and close the resource editor.

The file is immediately available as a sub-tab on the Preview tab of the object property sheet:

Customizing and Extending PowerDesigner
102 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

P

Class Properties - myClass (MyClass)

-

E=RRCH ==

General | Detail | Attributes | Cperations | Ports

| Parts I Annotations | Java |

Fidiz

Motes

Preview

S-FH-HS3A| ¥R 96| AEE| wicdl

E:l @33 Name: myClass
Attribute_1
Attribute 2
Attribute 3
Attribute 4

[+ [Java Source) myExtension.myFile /7] < [

o>] B -

oK || Cancel Aoply Help

2.21.1 Example: JavaGenerated File and Templates

Templates contain GTL code used to generate text fragments from PowerDesigner property values, while

generated files are used to assemble templates for generation as files or for previewing on the object property

sheet Preview tab.

In this example, a generated file called Java Source is defined for classifiers. A file will be generated for each

classifier in the model with a name derived from the $sourceFilename% template specified in the File name field,
and containing the contents generated from the $source% template:

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

103

E7 Object Language Properties {For All Models) _ |EI|5|

General I
- - |Java::Profile\CIassifier'\Generated Filez\Java Source j % - e - F-'ff ‘2}
13 G ted Fil -
E‘ I?"en E e _I Marme: I..lava Source
=) Templates File: name: |?€suurceFiIenameZ Type: |<Nune>
-1 Helpers
-3 Kind Encoding: IUTF-B
| %] DefaultHeader C :
armmment:

Defaullimports
attributes
extends
imparts
initializers
innerClasses S F-d SR a9 32@ LnlCdl

inerE nums

innerlnkerfaces it il
members
operations
package

- %6 zoOUICE - b
[P S R _I_I 4| I [3
| »
0k I Cancel Apply | Help |

[« Ll 1l

v Use package hierarchy az file path

1 Note

If you position your cursor between the percent signs surrounding this or any other template name and press
F12, you will either jump directly to the referenced template or, if several templates share the same name, to a
Results dialog in which you select the template to navigate to.

The referenced template, source, contains GTL code, including references to further templates called

%isSourceGenerated$%, $sourceHeader$%, $package%, and $imports%:

Customizing and Extending PowerDesigner
104 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

BT Object Language Propetties (For All Models) =loix|
General I
- - |Java::F'rofile\l:lassifier\Templates'\suurce j O& v lg v F&F agg
E-2) Generated Files ﬂ
T M ame: FOUCE
B Java Source
=10 Templates Comment; =
EHE] Helpers j
-0 Kind
----- t| DefaultHeader ﬂ
----- o] Defaullimports
----- o] attribubes %‘L?‘H[ﬁﬁ'as%ﬂ'qF'wj@ bin- Gl
_____ : ;T_:It:zr:td: .if (sisSourceGeneratedi) -
o .3et_objectiGenClazsifier, nemw)
""" !n|t|al|zers . /¢ header and package declaration
""" 3 !nnerCIasses [#sourceHeadersinin]h
----- &| inmerE nums [spackagesinin]
----- o] innerlnterfaces .44 iuports
----- 5| mmemnbers .unigque
----- & operations Simportad
..... 4| package »endunicue (Y1)
----- SOUMCE SF definition d
Y R SR _Ij 4 LI—I
l I 2

0k I Cancel Apply | Help |

2.21.2 Generating Your Files in a Standard or Extended
Generation

You can use generated files to extend the standard generation for objects from OOMs, BPMs, and XSMs or to

create a separate extended generation for any type of model. For extended generations, you can define a custom
menu command.

To extend the standard BPM, OOM, or XSM generation from the Resource Editor:

1. Select the Complement language generation property in the root of the extension file (see Extension File
Properties [page 21]) to have the extension file appear for selection on the Generation dialog Targets tab.

2. Define generated files as appropriate.

3. [optional] Define options in Generation\Options (see Example: Adding a Generation Option [page 133])
to have them appear on the Generation dialog Options tab.

4. [optional] Define commands in Generation\Commands and reference these commands in tasks (see

Example: Adding a Generation Command and Task [page 135]) to have them appear on the Generation
dialog Tasks tab.

Alternatively, to define separate file generations apart from the standard language generation for a PDM or any
type of model and make them available via the |+ Tools ¥ Extended Generation d command

1. [OOM, BPM, and XSM only] Deselect the Complement language generation property in the root of the
extension file (see Extension File Properties [page 21]).

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 105

2. Add appropriate metaclasses to the profile category, and select the Enable selection in file generation option
(see Metaclasses (Profile) [page 39]) for those metaclasses from which you want to generate files.

3. Define generated files as appropriate under these metaclasses.
The generation is immediately available on the Targets tab of the Generation dialog when you select [Tools

Extended Generation .
4. [optional] Create a command in the Tools menu to directly access your extended generation in its own dialog:
1. Create amethodin Profile\Model with the name you want to give to your command, and enter the

106

following code (where extension is the code of the extension file):

Sub %Method% (ob7j)

Dim selection ' as ObjectSelection

' Create a new selection

set selection = obj.CreateSelection

' Add object of the active selection in the created selection
selection.AddActiveSelectionObjects
' Generate scripts for specific target

InteractiveMode = im Dialog
obj.GenerateFiles "", selection, "extension"
End Sub

For more information about methods, see Methods (Profile) [page 95].

2. CreateamenuinpProfile\Model and select the Tools menu in the Location list (see Menus (Profile)

[page 96]).

3. Add the method to the menu using the Add Command tool:

|:>i] Extension Properties (myOORM) =
General
- - myBdension:: ProfileModel'Menus My Generation - Q-4 - F.'ff i';'} il
M Extensi
Dg G:::::inn Marne: My Generation
EI--{EI{Pamﬁle Comment; o
iJJ) Shared (3
E (Class L
{ EIIE Generated Files S
L myFile .
| 20D Templates Location: [Tools menu .,]
el Templat
o | @ X
. My Generation =
=+ Methods =l Menu
&% My Generation &% My Generation (My Generation)
[ok Aopl Help

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Extension Files

4. Select the command specified (for example, |* Tools ¥ My Generation 3) to open a custom Generation
dialog, which does not have a Targets tab:

Generation | =

Directany: Cemp® -

[Check model

Selection | Generated Files
[Femyo0M ABa|e-a- #2329 %|%

Mame Code
myClass MyClass
Another Class AnotherClass

IIII"., Classes /
Filter: Selected objectz): 242

Selection: <MName your selection> w7 IE

OK || Cancel || soply || Hep |

2.22 Transformations (Profile)

Transformations define sets of actions to modify objects either before or after a model generation or on request.
Transformations are commonly grouped together in transformation profiles.

Context

Transformations can be used to:

® |mplement Model Driven Architecture (MDA), which uses UML modeling to describe an application at
different levels of detail. PowerDesigner allows you to create an initial platform-independent model (PIM)

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 107

(modeling the basic business logic and functionality) and refine it progressively in different models containing
increasing levels of implementation and technology-dependent information through to a platform-specific
model (PSM). You can define transformations that will generate a more refined version of a model, based on
the desired target platform, and changes made to the PIM can be cascaded down to the generated models.

e Apply design patterns to your model objects.

e Modify objects for a special purpose. For example, you can create a transformation in an OOM that converts
<<control>> classes into components.

e Modify objects in a reversible way for round-trip engineering. For example, if you generate a PDM from an
OOM in order to create O/R mappings, and the source OOM contains components, you can pre-transform
components into classes for easy mapping to PDM tables. When you update the source OOM from the
generated PDM, you can use a post-transformation to recreate the components from the classes.

Transformations can be invoked on demand (select |» Tools » Apply Transformations .3), before or after model
generation (see Core Features Guide > Linking and Synchronizing Models > Generating Models and Model
Objects), or via a user-defined menu command (see Menus (Profile) [page 96]).

Procedure

Right-click a metaclass, stereotype, or criterion in the Profile category and select |» New » Transformation
Enter an appropriate Name and, optionally, a Comment to explain its purpose.

3. Onthe Transformation Script tab, enter a VBscript to perform the transformation.
In this example, which is created in an extension attached to a CDM under the DataItem metaclass, the script

tests to see whether the data item has a list of values defined and, if this is the case (and a domain with this
same list of values does not already exist in the CDM), creates a new domain with the list of values:

Sub %$Transformation% (obj, trfm)

Dim list
list = obj.ListOfValues
if not list = "" then

output "transforming " & cstr (obj)

' Check if such a domain already exist
Dim domn, found
found = false
for each domn in obj.Model.Domains
if domn.ListOfValues = list then
found = true
end if
next

' Create a new domain
if not found then
set domn = obj.Model.Domains.CreateNew ()
domn.SetNameAndCode obj.Name, obj.Code
domn.ListOfValues = list
end if
end if

End Sub

This transformation can be added to a transformation profile as a:

Customizing and Extending PowerDesigner
108 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

o Pre-generation transformation - The transformation is called from the Generation Options dialog. The
domains are created temporarily in the CDM before generation and then are generated to the target
model (for example, to a PDM).

o Post-generation transformation - The transformation can be called from the Generation Options dialog
(for a CDM-CDM generation). The domains are created in the target CDM after generation. Alternatively,

the transformation can be called at any time by selecting [Tools # Apply Transformations 3 to create
the domains in the existing model.

4. [optional] Review the Global Script tab (see Global Script (Profile) [page 126]), which provides access to
definitions shared by all VBscript functions defined in the profile, and the Dependencies tab, which lists the
transformation profiles in which the transformation is used.

2.22.1 Transformation Profiles (Profile)

A transformation profile groups transformations together, and makes them available during model generation or

by selecting | Tools » Apply Transformations 3.

Procedure

1. [if the Transformation Profiles category is not present] Right-click the root node, select Add Items, select
Transformation Profiles, and click OK to create this folder.

2. Rightclickthe Transformation Profiles folder, and select New to create a transformation profile.

3. Enter the following properties as appropriate:

Table 37:

Property Description

Name / Com- Specify the name of the transformation profile and provide an explanation of what it is intended to do.

ment

Model Type / [optional] Specify the type of model with which the transformation profile can be used during genera-

Family / Subfam- | tion and (if the type supports a language definition file) the family and subfamily. If one or more of

ily these fields is completed, the profile will only be displayed if the model to be generated conforms to
them. For example, if you define the transformation in a PDM or PDM extension and specify Object-
Oriented Model and Java, then the profile will only be available when you select to generate the
PDM into a Java OOM.

4. Click the Pre-generation tab and click the Add Transformations tool to add transformations to perform prior to
generation.
These transformations are executed before generation on the objects in your source model. If objects are
created by these transformations then they are automatically added to the list of objects to be generated. Any
changes to existing objects or new objects created by these transformations are reversed after generation, so
that your model returns to its previous state.

Customizing and Extending PowerDesigner

Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 109

5. Click the Post-generation tab and click the Add Transformations tool to add transformations to perform after
generation. Transformations added on this tab are also made available to apply outside of the context of a

generation by selecting [Tools » Apply Transformations 3.
These transformations are executed on the objects generated in your target model.

6. Click Apply to save your changes.

2.22.2 Developing Transformation Scripts

Transformation scripts are written in VBScript using a certain number of special methods. Transformation scripts
do not require as many checks as standard scripts, because they are always implemented in a new, empty,
temporary model, which is merged with the generation target model.

Since a source object can be transformed and have several targets, you may have problems identifying the origin
of an object, especially in the merge dialog box. The following mechanism is used to help identify the origin of an
object:

e |fthe source objectis transformed into a single object, the transformation is used as an internal identifier of
the target object.

e |fthe source object is transformed into several objects, you can define a specific tag to identify the result of
transformation. You should use only alphanumeric characters, and we recommend that you use a "stable"
value such as a stereotype, which will not be modified during repetitive generations.

The following methods are available when writing a transformation script:
o CopyObject (<source> [,<tag>])

Duplicates an existing object, sets a source for the duplicated object, and returns a copy of the new object.

° SetSource (<source>, <target> [,<tag>])
Sets the source object of a generated object. It is recommended to always set the source object to keep track
of the origin of a generated object.

o GetSource (<target> [,<tag>])

Retrieves the source object of a generated object.

° GetTarget (<source> [,<tag>])

Retrieves the target object of a source object.

Internal transformation objects are preserved when the transformations are used via the Apply Transformations
or a custom menu command, so that they can be re-executed if you subsequently update (regenerate) the model.
For example, you generate a CDM entity A to an OOM class B and then apply a transformation to class B in order
to create class c. If you make changes to entity A and repeat the generation to update the OOM, class B is updated
and the transformation is automatically reapplied to update class C.

Customizing and Extending PowerDesigner
110 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

2.23 XML Imports (Profile)

XML imports allow you to define mappings between an XML schema and the PowerDesigner metamodel (and any
extensions) to enable the import of XML files complying with the schema. You can specify initialization and post-
processing scripts to manage complexities in the import.

Context

For an overview of creating, deploying, and using XML imports, see Core Features Guide > Modeling with
PowerDesigner > Objects > Importing Objects from XML Files.

Procedure

1. [ifthe xML Imports category is not present] Right-click the root node, select Add Items, select XML
Imports, and click OK to create this folder.

2. Right click the xM1, Imports folder, and select New to create an XML import.

3. Enter the following properties as appropriate:

Table 38:
Property

Name

Description

Specifies the name of the import, which will be used as the name of the import command under

|} File > Import }

First diagram

Specifies the first diagram that should be initialized in the model created from the imported file.

Create default
symbols

Specifies to create symbols for the imported objects in the diagram.

File extension

Specifies the file extension that identifies XML documents that conform to the schema.

Comment

Provides an explanation of the import or other additional information.

4. Click the Schema tab and click the Import tool to copy the schema, with any imports and includes resolved, to
the extension file for mapping.

Caution

If the selected schema is too permissive and allows for too many possible object hierarchies it may not be
possible to display it fully in the Mapping Editor. If you have an example XML data file to import, you can
import this in place of the schema by clicking the Import from Sample tool and PowerDesigner will deduce a
partial schema from it. Note that while a schema obtained in this way may successfully import the sample
data file, other documents based on the same schema may not be complete if they contain other types of
objects (or attributes or collections) that, though valid for the schema, were not in the first document.

You can click the View as Model tool to open the schema as an XML schema model.

Customizing and Extending PowerDesigner

Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 111

5. [optional] Click the Extensions tab and select extension files containing extensions to the standard
PowerDesigner metamodel to provide additional metaclasses (see Extended Objects, Sub-Objects, and Links
(Profile) [page 42]), attributes (see Extended Attributes (Profile) [page 48]), and collections (see Extended
Collections and Compositions (Profile) [page 58]) to map your XML schema to.

Attaching extension files in this way allow you to reuse previously defined extensions in your imports or to
share extensions between imports. You can also define extensions under the Profile category in the resource
file containing the XML import definition, or create them dynamically when creating your import mappings.

6. [optional] Click the Initialization tab and enter VBScript to run at model creation time before the importing of
any objects. You can access shared library functions and static attributes defined for reuse in the resource file
from the Global Script tab (see Global Script (Profile) [page 126]).

7. [optional] Click the Post-Process tab and enter VBScript to run after all the objects have been imported.

8. Click the General tab and click the Mappings button to define mappings from the metaclasses identified in
your XML schema to those in the PowerDesigner metamodel in the Mapping Editor (see XML Import
Mappings [page 112]).

9. Click Apply to save your changes.

2.23.1 XML Import Mappings

You control how elements defined in an XML schema are imported by mapping them and their attributes,
compositions, and aggregations to objects in the PowerDesigner metamodel. The XML schema is analyzed and
presented as a list of metaclasses on the left side of the Mapping Editor and the PowerDesigner metamodel (and
any extensions) are displayed on the right side.

Context

1 Note

It is not necessary to map all metaclasses (or all their contents), but only those with which you want to work. If
the PowerDesigner metamodel does not contain appropriate metaclasses, attributes, compositions, or
aggregations to map against, you can create them dynamically here or save any existing mappings, close the
Mapping Editor, define or attach appropriate extensions, and then reopen the Mapping Editor to map to them.

Procedure

1. Dragand drop an external metaclass to a PowerDesigner metaclass to create an import mapping. Any
external attributes and collections are automatically mapped to PowerDesigner attributes with which they
share a name:

Customizing and Extending PowerDesigner
112 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

= E3 Rules (PERRuleOR11RZ)# —w=] Eg BusinessRule
= [Attributes = [Atrbutes

O CSADMName O Annotation
o Caption o ClientExpression
0 CheckConstraints (d) o Code
o GalerylD @ Comment
0 Galerytem|D O Description
o GallenObject|D @ DisplayMName
0 GenerateCode 3 KeywordList
0 GlobalCrder ——— i Name
o Id o QCLConstraint
o0 lgnoreNC / O ServerbExpression
5, Name o Stereotype

By default, the Mapping Editor lists the standard attributes and collections of metaclasses, which are
normally displayed in object property sheets. To display all available properties, click the Filter Properties tool,
and select Show All Properties. You can also filter the tree by using the Filter Mappings and Filter Objects
tools.

1 Note

If no suitable metaclass exists, to create and map to a new extended metaclass based on the
ExtendedObject metaclass, drag and drop the external metaclass onto the PowerDesigner metamodel
root.

2. Drag and drop additional attributes under the metaclass to PowerDesigner attributes with compatible data
types to create mappings for them. Attributes are contained in a folder under the metaclass and represent
individual properties such as Name, Size, DimensionalType, which have boolean, textual, numeric, or object

ID values:
= E3 Entities (PEREntityOR11R2) E G Table
= [Attibutes = [Attrbutes

0 AccessDriverType i AbstractData Type
0 AccessParameters O Annotation
O AfterScript Bl
3, BeforeScript # @ CheckConstraintName
o CSAOName @ CheckExpressionPreview

PowerDesigner identifies sub-object metaclasses in the schema that are limited to a single instance and
displays a 1 overlay on their icons. Attributes under such metaclasses are treated as belonging to the parent
metaclass and can be mapped to attributes under the PowerDesigner object with which the parent is mapped:

= RenamerLog (IPERRenamerLogOR11R2)
= [d Atributes
o CSAOMName
GlobalCrder
Id
ftems
Mame
Object Type
Ordinal

O B OB O @O -

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 113

1 Note

If no suitable attribute exists, to create and map to a new extended attribute, drag and drop the external
attribute onto the PowerDesigner metaclass to which its parent is mapped.

3. Drag and drop external sub-object metaclasses (compositions) under the metaclass to PowerDesigner
compositions to create mappings between them:

= E3, Ertities (PEREntityOR11R2) =] % Table
_J Attributes 4 Attributes
[ifttrbutes (PERAttibuteOR11H2)4——— 4 Collections
H CheckConstraints (PERCheckConstraint ErtityOR & Columns {Column})
B Indexes (PERIndexDR11R2) 1 Atributes
B Keys [PERKeyConstraintOR11R2) 4 Collections

Any attributes under the sub-object metaclass are automatically mapped to PowerDesigner attributes with
which they share a name. Map other sub-object attributes as necessary.

1 Note

In certain circumstances, it may be appropriate to map an external sub-object metaclass to a
PowerDesigner object metaclass, and so such mappings are also permitted.

4. Drag and drop external collections (aggregations) under the metaclass to PowerDesigner collections to
create mappings between them:

= E5 Keys (PERKeyConstraintOR11R2) = B Keys (Key)
1 Attributes 1 Attributes
= [} Collections = [} Collections
Qﬁ‘ Kevltems + % Attached Requirements
= E Triggers (FERTriggerEntityOR11R2) % AttachedRules
I

1 Attributes '.:% Columng

5. Incertain schemas, it may be necessary to identify attributes as references and identifiers to link one
metaclass to another through aggregation:

a. Right-click an attribute and select Declare as Object Reference to specify that it acts as a pointer to
another object. Such attributes often have a type of GUID, Token, or NCName (PowerDesigner
automatically identifies attributes of type IDRef as references). A rounded arrow overlay is added to the
attribute icon:

Customizing and Extending PowerDesigner
114 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

= E3 Entties (PERErtityOR11R2)
=) Attibutes

AccessDriverType

AccessParameters

AfterScript

, BeforeScript

CSAOMName

Caption
Category (Id)

BrE B B Bgl B B @

b. Open the metaclass that the object reference points to, select its identifying attribute, right-click it, and
select Declare as Unique Identifier. A key overlay is added to the attribute icon:

= E5 Users (DBUserOR11R2)
=) Attibutes

o CSAOMName
Caption
Children {1d)
CodeGenerators (Id)
GallerylD
Galleryttem|D
GalleryObject D
GlobalCrder

o R [o [Y o [v [

c. The object reference attribute can now be mapped to a PowerDesigner attribute of type object (which
also bears a rounded arrow overlay):

0 Comments | | O Mumber
i, DbOwner (Id) » %, Owner
O Directory (Id) | | O PartitionRange

6. [optional] Select a metaclass and enter an initialization or post-processing script to modify the objects at or
after creation (see Metamodel Mapping Properties [page 116]).

7. [optional] Click the target model (root node) to display the global list of mappings in the Mappings pane at the
bottom of the dialog and use the arrows at the bottom of the list to change the order in which objects are
imported to ensure that dependencies are respected.

1 Note

To control the order in which attributes, compositions, and aggregations are imported within objects,
select the target metaclass to display its mappings in the Mappings pane, and use the arrows at the bottom
of the lists on the Attribute Mappings, Collection Mappings, and Sub-Object Mappings sub-tabs.

8. Click Apply to save your changes.

Customizing and Extending PowerDesigner

Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 115

2.23.2 Metamodel Mapping Properties

Metamodel mappings are mappings between metamodel objects, which control how objects are imported or
generated. Metamodel mappings are sub-objects of the PowerDesigner metamodel object on which they are
defined.

To open a metamodel mapping property sheet, select the mapping from the list at the top of the Mapping Editor
Mappings pane or parent object property sheet Mapping tab and click the Properties tool.

M apping: [E. Project Management Ertities. Task. Mapping_1 ']

The tabs available on a particular mapping property sheet depend on the objects being mapped. The General tab
contains the following properties:

Table 39:
Source object Specifies the metamodel object being mapped to the target object.
Target object Specifies the metamodel object being mapped from the source object. This object is the parent of the

mapping itself.

Transformation [metaattribute mappings] Specifies a script to set the value of the attribute. In the following example,
script from an XML import, the notnullable attribute is imported to the Mandatory attribute and, because
the sense of the attributes is reversed, the boolean value imported is set to the opposite of the source
value:

Sub %Set% (obj, sourceValue)
obj.SetAttribute "Mandatory", not sourceValue
End Sub

In the following example, from an object generation, the Number ID attribute is generated to the
Comment attribute and a text string is prepended to make clear the origin of the value:

Function $%$AdjustValue$% (sourceValue, sourceObject, targetObject)
Dim targetValue
targetValue = "The original process NumberID is "

+cstr (sourceValue)
$AdjustValue% = targetValue

End Function

The following tabs are also available for metaclass mappings:

® |nitialization - Specifies a script to initialize the metaclass to be created. In the following example, the value of
the Stereotype attribute is set to SimpleType:

Sub %$Initialize% (obj)
obj.Stereotype = "SimpleType"
End Sub

e Attribute Mappings - Lists the mappings of attributes under the metaclass. Select a mapping and click the
Properties tool to open its property sheet. To control the order in which attributes are created, in order to
respect dependencies between them, use the arrows at the bottom of the list.

e Collection Mappings - Lists the mappings of collections under the metaclass.

Customizing and Extending PowerDesigner
116 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

® Post-Process - Specifies a script to modify the metaclass after creation and execution of mappings. In the
following example, the value of the Code attribute is copied to the Name attribute:

Sub %$PostProcess$ (obj)
' Copy code into name
obj.Name = obj.Code
End Sub

2.23.3 Metamodel Object Properties

To view the properties of metaclasses, metaattributes, and metacollections displayed in the Mapping Editor,
double-click the object node in the Mapping Editor or right-click the node and selecting Properties.

The General tab contains the following properties:

Table 40:
Property Description
Parent [metaattributes and metacollections] Specifies the metaclass to which the metaobject belongs.

Parent collection | [sub-objects/compositions] Specifies the name of the composition collection that contains the sub-ob-
jects under the parent object.

Name Specifies the name of the metaclass in the PowerDesigner metamodel or XML schema.

Data type [metaattributes] Specifies the data type of the attribute.

Identifier [metaattributes] Specifies that the attribute is used to identify the metaclass for referencing by another
metaclass.

Reference / Refer- | [metaattributes and metacollections] Specifies that the attribute or collection is used to point to another
ence path metaclass to form an aggregation.

Singleton [metaclasses] Specifies that only one instance of the metaclass is possible under each parent object.

Comment Provides additional information about the metaobject.

The following tabs are also available for metaclasses:

e Attributes - Lists the metaattributes belonging to the metaclass. Select an attribute in the list and click the
Properties tool to open its property sheet.

e C(Collections - Lists the metacollections belonging to the metaclass. Select a collection in the list and click the
Properties tool to open its property sheet.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 117

2.24 Object Generations (Profile)

Object generations allow you to define mappings between one PowerDesigner model type and another based on
the two metamodels (and any extensions) to enable the generation of one or more object types.

Context

For an overview of creating, deploying, and using object generations, see Core Features Guide > Linking and
Synchronizing Models > Generating Models and Model Objects > Generating Model Objects > Defining Advanced
Object Generations.

Procedure

[ifthe Object Generations category is not present] Right-click the root node, select Add ltems, select
Object Generations, and click OK to create this folder.

2. Rightclickthe Object Generations folder, and select New to create an object generation.

18

Enter the following properties as appropriate:

Table 41:
Property Description
Target model Specifies the type of model that will be created or updated by the generation.
type

Menu command | Specifies the name of the command that will appear in the interface under |} Tools > Generate

name Objects 4. This field is initialized when you select a target model type.

Comment Provides a description of the generation or other additional information.

[optional] Click the Source Extensions and/or Target Extensions tab and select extension files containing
extended attributes, collections, or metaclasses to reference in your mappings.

Attaching extension files in this way allow you to reuse previously defined extensions in your generations or to
share extensions between generations. You can also define extensions as appropriate under the Profile
category in the resource file containing the generation definition.

Click the Mappings button to define mappings from your source to target metaclasses in the Mapping Editor
(see Model-to-Model Generation Mappings [page 119]).

Click Apply to save your changes.

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

2.24.1 Model-to-Model Generation Mappings

You control how metaclasses from one PowerDesigner model type will be generated to metaclasses in another
model type by mapping them and their attributes and collections in the Mapping Editor. Any extensions defined
for the source or target metamodels are displayed and available for mapping.

Context

1 Note

It is not necessary to map all metaclasses (or all their contents), but only those with which you want to work. If
the PowerDesigner metamodel does not contain appropriate metaclasses, attributes, compositions, or
aggregations to map against, you should save any existing mappings, close the Mapping Editor, define or
attach appropriate extensions, and then reopen the Mapping Editor to map to them.

Procedure

1. Dragand drop a metaclass from the source pane on the left to a metaclass in the Target pane on the right.
Any source attributes are automatically mapped to target attributes with which they share a name:

= E BusinessFunction -4
= 4 Attibutes
. Annotation -+
. Code
, Comment 4
. Default Diagram #———
. Description
, Mame
. Stereotype 4
lections
'%:}J AttachedRequirements +¥——
@, AtachedRules 4¥———————
'%:}J RelatedDiagrams +——
% Sites

= RoleAssociations (Rolefssociation)

§ @ @ @ el @ @

Shw |

1 Note

—-] B Process
= [Attibutes

O ActionType
——————— & Annotation
———» i Code
——— Commenrt
— Default Diagram
———— & Description
O Duration
™ EmissionComelation
0 ImplementationMade
i} Implemerter
O LoopBspression
O LoopType

—_— %. MName

By default, the Mapping Editor lists the standard attributes and collections of metaclasses, which are
displayed, by default, in object property sheets. To display all available properties, click the Filter Properties
tool, and select Show All Properties. You can also filter the tree by using the Filter Mappings and Filter

Objects tools.

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 119

2. Dragand drop additional source attributes under the metaclass to target attributes with compatible data
types to map them. Attributes are contained in a folder under the metaclass and represent individual
properties such as Name, Size, DimensionalType, containing boolean, textual, numeric, or object ID values:

3. Dragand drop source sub-object metaclasses (compositions) under the metaclass to target compositions to
create mappings between them:

Any attributes under the source sub-object metaclass are automatically mapped to target attributes with
which they share a name. Map other sub-object attributes as necessary.

1 Note

In certain circumstances, it may be appropriate to map a source sub-object metaclass to a target object
metaclass, and so such mappings are also permitted.

4. Dragand drop source collections (aggregations) under the metaclass to target collections to create mappings
between them:

5. [optional] Select a metaclass and enter an initialization or post-processing script to modify the objects at or
after creation (see Metamodel Mapping Properties [page 116]).

6. [optional] Click the target model (root node) to display the global list of mappings in the Mappings pane at the
bottom of the dialog and use the arrows at the bottom of the list to change the order in which objects are
generated to ensure that dependencies are respected.

1 Note

To control the order in which attributes, compositions, and aggregations are generated, select the target
metaclass to display its mappings in the Mappings pane, and use the arrows at the bottom of the lists on
the Attribute Mappings, Collection Mappings, and Sub-Object Mappings sub-tabs.

7. Click Apply to save your changes.

2.25 Chart Datasets (Profile)

Datasets define paths through the PowerDesigner metamodel that will be used to extract data from models for
display in a PowerDesigner Web chart.

Context

A sample set of enterprise architecture model datasets (see Chart Examples [page 122]) is loaded by default in
your repository Library folder, and is also delivered as part of the EA Example files available at

<install dir>/Examples/EAExample (See Enterprise Architecture Modeling > Planning Your Enterprise
Architecture Initiative > Example EA Model, Imports, and Charts).

Customizing and Extending PowerDesigner
120 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

Procedure

1. [ifthe Dataset Definitions category is not present] Right-click the root node, select Add ltems, select
Dataset Definitions, and click OK to create this folder.

2. Rightclickthe bataset Definitions folder, and select New to create a new entry.

3. Enter the following properties as appropriate on the General tab:

Table 42:
Property Description
Name Specifies the internal name of the dataset, which can be used for scripting.
Label Specifies the name that will be displayed to identify the dataset in the PowerDesigner Web chart
builder.
Comment Provides an explanation of the dataset or other additional information.

4. Click the Definition tab, and select the Source and Target metaclasses that you want to analyze, and then click
the Modify definition button.

For example, if you want to analyze the deployment of databases by site, select Site as the source and
Database as the target. To see the OS split for your hardware servers, without concern for sites, or any other
organizing dimension, select Model as the source and Hardware Server as the target.

5. Specify the query path that will be used to extract the data from you model, and then click Next.

The length and complexity of the path that you define is dependant on the way in which your model is
constructed. In our example, there are three levels of sites (region, country, and city), systems are located in a
city, and the database is associated within a system.

Site

=1 SubSites
EI Site

=1 SubSites

EI Site

=-{d Systems
=-{igl System
=1 Databases

=

For further path examples, see Chart Examples [page 122].

6. Specify the attributes that you want to make available in the PowerDesigner Web chart builder, and then click
Finish.
By default only the Name and Code attributes are shown for each of the metaclasses traversed by your path.
Select the Show all attributes to make all attributes available for selection. You can also specify aliases for
each of the selected attributes to make them easier to understand for chart builder users.

7. When you have completed all your datasets, click OK to close the extension file, and then check it into your
repository (see Core Features Guide > Administering PowerDesigner > Deploying an Enterprise Glossary and
Library > Deploying an Enterprise Library > Sharing Resource Files via the Library).

8. Connect to your repository with PowerDesigner Web, click the Repository tile, and navigate to an appropriate
model to test your dataset. Click the Charts facet and create a new chart.

Customizing and Extending PowerDesigner
Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 121

For detailed information about working with PowerDesigner Web, see PowerDesigner Web.

2.25.1 Chart Examples

Example models and an extension file containing datasets to derive charts from them are provided with
PowerDesigner.

The following example charts are defined in the EA Charts extension file, which is loaded by default in your
repository library (and which is also delivered as part of the EA Example files available at <install dir>/
Examples/EAExample).

1 Note

Chart datasets must be defined to be compatible with the structure of the models they will analyze. These
charts are based on the structure of the EAExample.eam model (see Enterprise Architecture Modeling >
Planning Your Enterprise Architecture Initiative > Example EA Model, Imports, and Charts).

Table 43:

Dataset and Chart Configuration Chart

Question: What OS are my servers running?
0S Split (Global)

Path: |} Model > Hardware Server (Operating System, B Lnux
B winpows

Operating System Version) b |
Chart: A pie chart with each OS as a piece of the pie:

® Pie Sectors: Count (of hardware servers)

e |egendColor:Operating System

Customizing and Extending PowerDesigner
122 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

|
Dataset and Chart Configuration ’ Chart

Question: What OSs are running where?

Servers by Country with OS Split
& Linux

Path: [» Site » Site # Site » Hardware Server (Operating © vnears
System, Operating System Version)]

Chart: A stacked bar chart with OSs as stacked colored bars

® Measures: Count (of hardware servers)

Count

e XAxis:Region, Country

® | egendColor: Operating System

canada Usa India Japan France Germany

Americas Asia Europe

Region / Country

Question: What DBMSs are my servers running?

DBMS Split
Path: | Model i Database (DBMS, DBMS Version) 4

@ apache Hadoop

@ wysaL

' Oracle Database

a SAP Adaptive Server Enterprise
B AP SQL Anywhere

@ SOLSERVER

Chart: A pie chart with each DBMS as a piece of the pie:

® Pie Sectors: Count (of databases)

® | egend Color: DBMS

Question: What DBMSs are deployed where?

Database Deployment by Site

@

Path: [r Site » Site » Site » Hardware Server # Deployment e
Instance » Database (DBMS, DBMS Version) 4

usa

Shanghai Guangz New York

=

w

|
e

Chart: A tree map: e e Oradle Database

S

® AreaWeight: Count (of databases)
e AreaColor:Count (of databases) Hosion

e AreaName:Region, Country, Site, DBMS = = e
Swindon Marseilles Frankfurt

San Francisco

Oracle Database

SAP Adaptive Canada

Toronto

London

‘Oracle Database

Customizing and Extending PowerDesigner

Extension Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 123

Dataset and Chart Configuration ’ Chart

Question: Who are my process owners and what processes do
they own?

Path: |} Organization Unit > Organization Unit > Person >
Role Association i Process 4

Chart: A bar chart with a bar per person:

® Y Axis:Count (of processes)
e X Axis: Person

e | egendColor:Organization Unit

Count

Number of Processes Owned by Owner

@ Ooperations
Ll

Sales
U HR
@ Procurement
® Finance

Axel Dench
Bodie Taylor
Bruce Spence

Chantal Freer
Christopher Kirby
Coinneach Alexander

Fay David
Genevieve Reilly
John Knaoll
Katie Lucas

Goran Kleut
Lawrence Foster

David Bowers

Dean Mitchell J
Dominique Chionchio
Hamish Roxburgh
Jerome Blake
Joel Edgerton
Mark Sendell

Process Owner

Matt Rowan J——
Nina Fallon
Pablo Hidalga

Rena Owen
Robert Bouffard
Rohan Michol

Tim Gibbons J——

Question: What is my IT Capex by Program and Project?

Path: |} Program > Program > Project (ItCapex) }
Chart: A tree map:

e AreaWeight: TtCapex
® AreaColor: ItCapex

® AreaName: Program, SubProgram, Project

Project Destiny

IT Capital Expenditure By Program and Project

One Acme

Project Vanity Project Cord
Project Gold
180000
0

Project Random

Project Fire
Project Nevermind

Cloud @ 800000

ProjectWall

Question: What is my IT Capex by Goal?

Path: |* Goal Goal » Goal ¥ Fulfillment ¥ Project
(ItCapex) 4
Chart: A pie chart with each goal as a piece of the pie:

® Pie Sectors: ItCapex

e | egend Color: Goal

IT Capital Expenditure by Goal

@ Wove CRI Senvices to the Cloud by end 2
1 Move HR systems to the Cloud by end 2015
Move Online Store to the Cloud by end 2017
' Reduce the number of DBWSS in use oy2.
1 Refactor Internal Code as Basis for Share
@ Update all DBUSS to Current-1 version wit

124 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner

Extension Files

Dataset and Chart Configuration

Question: What is my IT Capex by Business Function? IT Capex by Business Function
1.4M 4 B ticapex
Path: |} BusinessFunction > BusinessFunction > ot
TraceabilityLink > Project (ItCapex)] 'l
Chart: A bar chart with a bar per business function: o 00K
2
. ©
® Y Axis: ItCapex £ 5ok
e XAxis:L1l Business Function w00
200k
0l
s B 5 = g &
B B E & c g =
& £ 5 g 3
Question: How complex are the dependencies of my business BusinessFunction App Depend
. . . 25 B count
functions on applications?
Path: |} BusinessFunction > BusinessFunction > 1
TraceabilityLink # System ¥ EnterpriseApplication 4 "
g
- . . =
Chart: A bar chart with a bar per business function: 8
10 -
® Y Axis:Count (of applications)
e XAxis:L1l Business Function *
0
§ 5§ ¢ B s : g g R
= £ 3 3 E £ £ 2 = 2
= E E H 2 &
é
Question: What is the impact of my projects on processes? Project Impact on Processes
600 - @ count
Path: [Process § Process ¥ Process ¥ Process # o
TraceabilityLink > System > Impact p Project |
400 4
Chart: A bar chart with a bar per business function:
. . § 300 4
® Y Axis:Count (of projects) o
e XAxis:L1 Business Function 2001
100 4
od
E & ¥ % E B o
g 2 £ z 2 = B
z g = = = B £
= g £ £ g £

Customizing and Extending PowerDesigner
Extension Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

125

2.26 Global Script (Profile)

The profile contains a global script, which you can use to store functions and variables to be reused in your scripts
defined for extensions.

For example, we could imagine writing a function for obtaining the data type of an item and reusing it in the scripts
for both the custom check and autofix examples (see Custom Checks (Profile) [page 86].

The new DataTypeBase function is entered on the Global Script tab as follows:

Function DataTypeBase (datatype)
Dim position
position = InStr (datatype, " (")
If position <> 0 Then
DataTypeBase = Ucase (Left (datatype, position -1))
Else
DataTypeBase = Ucase (datatype)
End If
End Function

The script for the check (see Example: PDM Custom Check [page 88] can be rewritten to call the function as
follows:

Function %Check% (obj)

Dim ¢ 'temporary index column
Dim col 'temporary column

Dim position

%Check%= True

If obj.type = "LF" or obj.type = "HG" or obj.type = "CMP" or obj.type ="HNG" then
For Each ¢ In obj.IndexColumns

Set col = c.column

If (DataTypeBase (col.datatype) = "VARCHAR") And (col.length > 255) Then

Output "Table " & col.parent.name & " Column " & col.name & " : Data type is

not compatible with Index " & obj.name & " type " & obj.type
%Check% = False
End If
Next
End If
End Function

1 Note

Variables defined on the Global Script tab are reinitialized each time they are referenced in another script.

Customizing and Extending PowerDesigner
126 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Extension Files

3 Object, Process, and XML Language
Definition Files

Language definition files provide PowerDesigner with the information necessary to model, reverse-engineer, and
generate for a particular object-oriented, business process, or XML language. PowerDesigner provides definition
files for many popular languages. You select a language when you create an OOM, BPM, or XSM.

Language definition files have an . xol, .xp1, or .xs1 extension and are located in <install dir>/Resource
Files. Toview the list of languages, select | Tools » Resources » Object Languages 3, Process Languages, or
XML Languages. For information about the tools available in resource file lists, see PowerDesigner Resource Files
[page 9].

1 Note

The PDM uses a different form of definition file (see DBMS Definition Files [page 139]), and other model types
do not have definition files but can be extended with extension files (see Extension Files [page 18]).

All target languages have the same basic category structure, but the detail and values of entries differs for each
language:
e Settings - contains data types, constants, namings, and events categories used to customize and manage
generation features. The types of items in this category differ depending on the type of resource file.
® Generation - contains generation commands, options, and task.
e Profile - contains extensions on metaclasses.

Customizing and Extending PowerDesigner
Object, Process, and XML Language Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 127

E7 Object Language Properties (For All Models) - |EI|£|

General |
- - I.Java

=] .
=3 Settings lzmre:
@ M amings
@ DrataT vpes
@ Constants
@ Events

------ EnableGenerics

R P

IJ ava _=|
IJ ava IT

File name: IE:HPrngram Filez\SybazeiPowerDezigner 165Rezource Files

Code;

F amily: I-.l ava

...... Enable ardrgs

Subfamily: |JZEE
=5 Generation

@ Commards | _flfnzrah;n : ;
@ Options nable trace mode
-2 Tasks Comment:

=3 Profile

@ Shared
@ Annotation
'?E, Aszociation
El@ Attribute

: @ Criteria

@ Extended Attributes
2% Crren LI

Thiz object language definition i bazed on the Java language
specification.

[t includes suppart for J25E 5.0 Metadata az well az J2EE 1.4, Enterprize
JavaBeans 2.1, Java Servlets 2.4 and Java Server Pages [J5P).

o |

Cancel Spply Help

The root node of each file contains the following properties:

Table 44:
Property Description
Name / Code Specify the name and code of the language definition file.
File Name [read-only] Specifies the path to the language definition file. If the target language has been copied to
your model, this field is empty.
Version [read-only] Specifies the repository version if the resource is shared via the repository.

Family / Subfamily

Specifies the family and subfamily of the language, which may enable certain non-default features in
the model. For example, object languages of the Java, XML, IDL and SAP® PowerBuilder® families sup-
port reverse engineering.

Enable Trace Mode

Lets you preview the templates used during generation (see Templates (Profile) [page 100]). Before
starting the generation, click the Preview page of the relevant object, and click the Refresh tool to dis-
play the templates.

When you double-click on a trace line from the Preview page, the Resource Editor opens to the corre-
sponding template definition.

128 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Object, Process, and XML Language Definition Files

Property Description

Comment Specifies additional information about the target language.

3.1

Settings Category: Process Language

The Settings category contains the following items used to control the data types, constants, namings, and events
categories used to customize and manage BPM generation features:

e |mplementation — [executable BPM only] Gathers options that influence the process implementation
possibilities. The following constants are defined by default:

o

o

LoopTypelist - This list defines the type of loop supported by the language. The value must be an integer
OperationTypelList - This list defines the type of operation supported by the language. An unsupported
operation type cannot be associated with a process. The value must be an integer
EnableEmissionCorrelation - enables the definition of a correlation for an emitted message
EnableProcessReuse - allows a process to be implemented by another process
AutomaticlnvokeMode - indicates if the action type of a process implemented by an operation can be
automatically deducted from the operation type. You can specify:

o 0O (default) - the action type cannot be deduced and must be specified

o 1-thelanguage enforces a Request-Response and a One-Way operation to be received by the

process and a Solicit-Response and a Notification operation to be invoked by the process

o 2thelanguage ensures that a Solicit-Response and a Notification operation are always received by
the process while Request-Response and One-Way operations are always invoked by the process

Customizing and Extending PowerDesigner
Object, Process, and XML Language Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 129

130

i Process Language Properties [For All Models)

M=l B3
General |
a v = IBF'EL4WS'I.'I::Settings'\lmplementation'\[lperatiDnT_l,lpeList E - W ff.;-"B
=L Settings ;l _ TR
E‘D Implementation M ame: OperationT ypelis
b D:l LoopTppelist Comment: | This list defings the tppe of operation supported by the language ~
|I| OperationT ypelist A unzupported operation tupe cannot be azzociated with a
EnableE mizzionCorela Process.)
i EnahbleProcessFeyse The _-'alue rLzt I:ue_an integer. _ _ .
) The list must contain a subset of following operation types:
=+ DataHanding - Undefined [value 0]
Enablet ezzagelnFloy - One-way [value 1) LI
o Enablet essage ariab Walle:
I':'Il:l Choreography S=:= % | 34
b EnabletdultipleStarts . | & 2 |
- EnableT opLevelChaore M amne Y alue =
=~ Prafile 1 1] ndefined
(-0 Shared 2 1 One-way
=B BasePackage 3 2 Requestresponse L
. -0 Templates ~
‘B Carrelation 1=
-8 Data =
o M| NETEYRS KA ETERD]
«| [3
Ok I Cancel Apply | Help |

DataHandling - [executable BPM only] Gathers options for managing data in the language. The following
constant values are defined by default:

EnableMessageOnFlow - indicates if a message format can be associated to a flow or not. The default

value is Yes

EnableMessageVariable - enables a variable object to store the whole content of a message format. In this
case, the message format objects will appear in the data type combo box of the variable

Choreography - Gathers objects that allow the design of the graph of activities (start, end, decision,
synchronization, transition...) Contains the following constant values defined by default:

EnableMultipleStarts - When set to No, ensures that no more than one start is defined under a composite

process

EnableTopLevelChoreography - When set to No, ensures that no flow or choreography object (start, end,
decision...) is defined directly under the model or a package. These objects can be defined only under a

composite process

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Object,

Customizing and Extending PowerDesigner
Process, and XML Language Definition Files

3.2 Settings Category: Object Language

The Settings category contains the following items used to control the data types, constants, namings, and events
categories used to customize and manage OOM generation features:

Data Types - Tables for mapping internal data types with object language data types. The following data types

values are defined by default:

o

o

BasicDataTypes - lists the most commonly-used data types. The Value column indicates the conceptual
data type used for CDM and PDM model generations.

ConceptualDataTypes - lists internal PowerDesigner data types. The Value column indicates the object
language data type used for CDM and PDM model generations.
AdditionalDataTypes — lists additional data types added to data type lists. Can be used to add or change
data types of your own. The Value column indicates the conceptual data type used for CDM and PDM

model generations.

DefaultDataType — specifies the default data type.

£ Object Language Properties [For All Models) M= E3
General |
S o = IXML Schema::SettingzhDataT ypeziBazicDataTypes H - ﬁ: ?_;’B
(5] #ML - Schema -
Ell:l Seftings Mame: BazicDataT ypes
|:| Mamings Comment: |basic #ML-5chema datatypes .

E||:| DataT ypes

P |I| AdditionalD ataT ypes

|I| BazicDataTypes
P |I| Conceptuall ataT vpes
I:l Constants
[#-[Z0] Events

----- [Gereration

-2 Profile

The zecond column indicates the conceptual data wpe
uzed for COM and PO model generations but alzo in the
'Change Object Language' process

[

Walle:
I ame Yalue 3
1 wzd:string TeT
2 wzd:boolean BL
3 wzd:decimal M
4 wzd:float F
] wzd:double M
B wzd:duration T
Ak RIRAEIEIRN

(] I Cancel Spply | Help

e (Constants - contains mapping between the following constants and their default values: Null, True, False,
Void, Bool.

Namings - contains parameters that influence what will be included in the files that you generate from an
OOM:

(e]

GetterName - Name and value for getter operations

Customizing and Extending PowerDesigner
Object, Process, and XML Language Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

131

o GetterCode - Code and value for getter operations

o SetterName - Name and value for setter operations

o SetterCode - Code and value for setter operations

o lllegalChar - lists illegal characters for the object language. This list populates the Invalid characters field

in| Tools ¥ Model Options » Naming Convention 3. For example, "/ !=<>""" ()"

Events - defines standard events on operations. This category may contain default existing events such as
constructors and destructors, depending on the object language. An event is linked to an operation, and the
contents of the Events category is displayed in the Event list in operation property sheets to describe the
events that can be used by an operation. In PowerBuilder for example, the Events category is used to
associate operations with PowerBuilder events.

3.3 Settings Category: XML Language

The Settings category contains the Data types category that shows a mapping of internal data types with XML
language data types.

The following data types values are defined by default:

ConceptualDataTypes - The Value column indicates the XML language data type used for model
generations. Conceptual data types are the internal data types of PowerDesigner, and cannot be modified.
XsmDataTypes- Data types for generations from the XML model.

3.4 Generation Category

The Generation category contains categories and entries to define and activate a generation process.

The following sub-categories are available:

132

Commands - contains generation commands, which can be executed at the end of the generation process,
after the generation of all files. Commands are written in GTL (see Customizing Generation with GTL [page
268]), and must be included within tasks to be evoked.

variahle defined in General Options = Vanahles
{environment variahle)

Afnot (XSJAVACK) -
.log Warning: Undefined environment wariable: JAVAC (Java < |
log If jawa.exe 1= not accessible from Path, please define

czet_wvalue{ JAVAC, "javac.exe")
else \
cset_wvalue{ JAVAC, "X$JAVACE") |
1'3'3_81 endif executahle
vatiahle

foreach_item{Activelodel GeneratedClassifierlist) |
cexecute_command (% _JAVACYK, XjavaFilepath’, cmd_Fipelutput)
next | ~

ternplate for evaluating the path blocks until completion
and shows the output

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Object, Process, and XML Language Definition Files

e Options — contains options, available on the Options tab of the Generation dialog, the values of which can be
tested by generation templates or commands. You can create options that take boolean, string, or list values.
The value of an option may be accessed in a template using the following syntax:

%GenOptions.option%

For example, for a boolean option named GenerateComment, $GenOptions.GenerateComment% will
evaluate to either true or false in a template, depending on the value specified in the Generation dialog
Options tab.

e Tasks — contains tasks, available on the Tasks tab of the Generation dialog, and which contain lists of
generation commands. When a task is selected, the commands included in it are retrieved and their templates
evaluated and executed.

3.4.1 Example: Adding a Generation Option

In this example, we will add a generation option to the Java object language.

Procedure

1. Select|r Language » Edit Current Object Language 3 to open the Java resource file.

2. Expand the Generation category, and then right-click the Options category and select New:

Customizing and Extending PowerDesigner
Object, Process, and XML Language Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 133

F7 Object Language Properties [For All Models]

Eeneral |

=] E3

=t =T IJava::Generatiun'&[lptiu:uns"xLlserDefined_Elptiu:un

EH- %%

[0 JZEE
MembersPrimaryS art

MembersT ypeSort

J

--I:ar?aettings Marne: ILlserDefined_ElptiDn

l.=_||:| Generation Type: |Boolean |
-] Cormmands
=1-(C] Optians Comment: |Userdefined option for generation ;I

Members\isibilitySort Values Yes O Mo
Packagelmparts
o szerDefined_Optian
M- Tazks
-2 Prafile
k. I Cancel Apply Help
3. Click OK to save your changes and return to the model. Then select ||+ Language » Generate Java code ito

134

open the Generation dialog, and click the Options tab. The new option is listed on the tab under its comment

(or its name, if no comment has been provided):

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner

Object, Process, and XML Language Definition Files

Generation Hi=l

Directary: I-:: Ygeneration IEI

Targetsl Selection Options | Tazkz I

[T Check madel

Target [ption [=

Java EJE : &dd Java claszes source code in the JARitrue

Java Java : Sort clasz members primarily by Wigibility

Java Java : Clazs members type sort Attributes - Of

Java Java: Clasz members vizibiliby sort Frivate - Publi

Java Java : Generate package imports falze

Java EJB : Generate CMA field accessars in remaote 1 false

Java EJB : Generate CMP figld accessors in compon ; tue

Java U=zer defined option for generation true =
=
=

l | *

k. I Cancel Apply | Help |
1 Note

For detailed information about creating and modifying generation templates, see Customizing Generation
with GTL [page 268].

3.4.2 Example: Adding a Generation Command and Task

In this example, we will add a generation command and associated task to the Java object language

Procedure

1. Create anew OOM for Java, and then select |p Language » Edit Current Object Language 3.
2. Expand the Generation category, and then right-click the Commands category and select New.

3. Name the command DoCommand and enter an appropriate template:

Customizing and Extending PowerDesigner
Object, Process, and XML Language Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

£ Object Language Properties [For All Models]

General |

IS [=] E3

a5 IJava::Generatiu:un'xEu:ummands'xDDEDmmand

EH- %%

(5] Java -

-] Settings Mame: DoCommand

EII:I Commatdz
EII:l Enterprize Java Beans
-8 EJBClearup

=21 web Application

=-(_] Generation Comment; [Run do command on file to generate ;I

----- 4 EJBVerify H--EE#M L BB v~ 8f Lk

[

g3 wWebdppBuid

43 DoCommand

@; Java

I:l Enterprize Java Beans

I:l Yweb Application LI LI_I

T T S

Llog WMarning: Undefined enwvironment variahlf—
Llog If do.bat is not accessible from Path,
LFet_walue (DO, "do.bat™)

4 Javac .set_value| DO, "%5D0%™)
43 Jlavadoc L

-] Options

=[] Tasks .zet_wvalue(CHD, "cmd.exe™)

F

o

o |

Cancel

Apply | Help |

4. Right-click the Tasks category and select New. Name the task Execute, click the Add Commands tool, select

136

DoCommand from the list, and then click OK to add it to the new task:

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner

Object, Process, and XML Language Definition Files

£ Object Language Properties [For All Modelz]

General |

e e = IJava::GeneratiDnHTasksHEHecute

EH- %%

I [=] B3

(5] Java

I:l Settings

=1-[_] Generation

I:l Commandz

I:l Optionz

ElI:I Tazks
I:l Enterprize Java Beans
[:l Wweb Application
% Compile
CompileRun
Execute

----- % Generatelavadoc
-] Prafile

M ame:; Euxecute

Comment; |E=ecute do command on files

Commands;

| B o

5. Click OK to save your changes and return to the model. Then select

T Cormment (=
1 DiaCommand Fun do command on file bo generate
LRI R4 EYEAEY [>T
(] I Cancel Apply | Help |
Language » Generate Java code . to

open the Generation dialog, and click the Tasks tab. The new task is listed on the tab under its comment (or its

name, if no comment has been provided):

Customizing and Extending PowerDesigner
Object, Process, and XML Language Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

137

Generation Hi=]

Diirectony: Iu::'xgeneratiu:un"-. IEI

Targetsl Selectiunl Options Tasks |

+ +

WSOL: Generate Web Service related files uzing the XRPCC tool
Java: Compile Java sources

Java: Package compiled clazzes ina AR file

Java: Run.Java application

Java: Generate Java Doc

Java: Run JZEE werifier

Java: Package J2EE application in an EAR file

Java: Execute DoCommand on files

k., I Cancel Spply Help

3.5 Profile Category (Definition Files)

The language definition file Profile category can contain Stereotypes, Extended attributes, Methods and so on, to
extend the metaclasses defined in the PowerDesigner metamodel.

In object languages, the Shared/Extended Attribute Types category contains various attributes used to
control object language support within PowerDesigner. The Object Container variable specifies the default
container for implementing associations. This attribute has an editable list of possible values for each object
language, from which you can select a default value for your language. You can, if necessary, override this default
using the Default association container model option.

For detailed information about working with the Profile category, see Extension Files [page 18].

Customizing and Extending PowerDesigner
138 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Object, Process, and XML Language Definition Files

4 DBMS Definition Files

DBMS definition file provide PowerDesigner with the information necessary to model, reverse-engineer, and
generate for a particular DBMS. PowerDesigner provides definition files for most popular DBMSs. You select a
DBMS when you create a PDM.

DBMS definition files have an . xdb extension and are located in <install dir>/Resource Files/DBMS.To

view the list of DBMSs, select [Tools » Resources » DBMS 7. For information about the tools available in
resource file lists, see PowerDesigner Resource Files [page 9].

You can consult or modify the DBMS definition file attached to your PDM in the Resource Editor by selecting

|+ Database ¥ Edit current DBMS 7. When you select a category or an item in the left-hand pane, the name, value,
and related comment appear in the right side of the dialog box.

Caution

The resource files provided with PowerDesigner inside the Program Files folder cannot be modified directly.
To create a copy for editing, use the New tool on the resource file list, and save it in another location. To include
resource files from different locations for use in your models, use the Path tool on the resource file list.

Each DBMS file has the following structure:

e General - contains general information about the database, without any categories (see General Category
(DBMS) [page 1541]). All items defined in the General category apply to all database objects.
e Script - used for generation and reverse engineering. Contains the following sub-categories:
o SQL - contains the following sub-categories, each of which contains items whose values define general
syntax for the database:
o Syntax - general parameters for SQL syntax (see Syntax Category (DBMS) [page 155])
o Format - parameters for allowed characters (see Format Category (DBMS) [page 156])
o File - header, footer and usage text items used during generation (see File Category (DBMS) [page
158])
o Keywords - the list of SQL reserved words and functions (see Keywords Category (DBMS) [page
159))

o Objects - contains commands to create, delete or modify all the objects in the database. Also includes
commands that define object behavior, defaults, necessary SQL queries, reverse engineering options,
and so on (see Script/Objects Category (DBMS) [page 161]).
o Data Type - contains the list of valid data types for the specified DBMS and the corresponding types in
PowerDesigner (see Script/Data Type Category (DBMS) [page 216]).
o Customize - Retrieves information from PowerDesigner Version 6 DBMS definition files. It is not used in
later versions.
e (ODBC - present only if the DBMS does not support standard statements for generation. In this case the ODBC
category contains additional items necessary for live database connection generation .
e Transformation Profiles — contains group of transformations used during model generation when you need to
apply changes to objects in the source or target models (see Transformations (Profile) [page 107]).
e Profile - allows you to define extended attribute types and extended attributes for database objects (see
Profile Category (DBMS) [page 218]).

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 139

The following properties are available on the root of a DBMS definition file:

Table 45:

Property Description

Name / Code Name and code of the DBMS.

File Name [read only] Path and name of the DBMS file.

Family Used to classify a DBMS, and to establish a link between different database resource files. For example,
SAP® SQL Anywhere®, and SAP® Adaptive Server® Enterprise belong to the SQL Server family.
Triggers are retained when you change target within the same family.
Merge interface allows to merge models from the same family.

Comment Additional information about the DBMS

4.1 Triggers Templates, Trigger Template Items, and
Procedure Templates

The DBMS Trigger templates, Trigger template items, and Procedure templates are accessible via the tabs in the
Resource Editor window. In addition, for Oracle, there is a tab for database package templates.

Templates for stored procedures are defined under the Procedure category in the DBMS tree view.

For more information, see Data Modeling > Building Data Models > Physical Diagrams > Stored Procedures and
Functions (PDM)

4.2 Database Generation and Reverse Engineering

PowerDesigner supports generation and reverse engineering of databases through scripts and live connections
via SQL statements and queries stored inthe Script/Objects category. Generation and reverse-engineering of
scripts and generation to a live connection all use the same statements, while reverse-engineering from a live
connection uses separate queries.

PowerDesigner performs generation and reverse-engineering as follows:

e Generation/Update Database - Each model object selected is applied to the statements in the script/
Objects category.
® Reverse engineering:
o Script - PowerDesigner parses the script and identifies object creation statements by comparing them
with the statements in the Script/Objects category.
o Live connection - PowerDesigner uses the queries inthe Script/Objects category to retrieve
information from the database system tables. Each column of a query result set is associated with a
variable. The query header specifies the association between the columns of the resultset and the

Customizing and Extending PowerDesigner
140 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

variable. The values of the returned records are stored in these variables which are then committed as
object attributes.

4.2.1 Script Generation

PowerDesigner can generate a SQL script from a PDM to create or modify a database. The statements that
control script generation are available in the script/Objects category.

When generating a SQL script, PowerDesigner takes each object to be created in turn, and applies the appropriate
Create or other statement to create or modify the object:

® Create - Creates anew object.

® Alter /Modify - Modifies the attributes of an existing object.

® 2dd- Creates a new sub-object. If keys are defined inside a table, they will be created with an Add statement,
but if they are created outside the table, then they will be created with a table Modi fy statement.

® Rename - Renames an object.

® Drop - Drops an object (for use when an Alter statement is not possible).
® <Object>Comment - Adds a comment on the object.

® Options - Defines the physical options of an object.

® ConstName - Defines the constraint name template for object checks.

For example, in ASE 15.7, the Create statement in the Table category is the following:

create table [%$QUALIFIER%]STABLES

(
$TABLDEFN%

)
[$OPTIONS%]

This statement contains the parameters for creating the table together with its owner and physical options using
variables (see Variables for Tables and Views [page 234]) that extract the necessary information from the
object's properties. The $TABLDEFN% variable collects the Add items in the Column, PKey, Key, and Reference
categories, and the AddTableCheck item in the Table category.

Other statements in the object categories are used to customize the PowerDesigner interface and behavior
according to database features, such as Maxlen, Permission, EnableOwner, and A11owedADT.

4211 Extending Generation with Before and After
Statements

You can extend script generation statements to complement generation using the extension statements. The
extension mechanism allows you to generate statements immediately before or after Create, Drop, and Modify
statements, and to retrieve these statements during reverse engineering.

Extension statements are written in GTL (see Customizing Generation with GTL [page 268]). During generation,
the statements and variables are evaluated and the result is added to the global script.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 141

1 Note

We recommend that you avoid using GTL macros (other than . i f) in generation scripts, as they may not be
resolvable when reverse engineering by script. Generating and reverse engineering via a live database
connection are not subject to this limitation.

Example - Adding an AfterCreate Statement

The extension statement AfterCreate is defined in the Table category to complement the table Create
statement by adding partitions to the table if the value of the partition extended attribute requires it:

.1f (%ExtTablePartition% > 1)
%$CreatePartition%

go
.endif

The . if macro evaluates variable $ExtTablePartition$, which is an extended attribute that contains the
number of table partitions. If the value is higher than 1, then $CreatePartition%, defined in the Table category,
will be generated as follows:

alter table [$QUALIFIER%]%TABLES
partition $ExtTablePartition$%

This item generates the statement for creating the number of table partitions specified in $ExtTablePartition

o
o,

Example - Adding a BeforeCreate Statement
The extension statement BeforeCreate is defined in the User category to create the login of a user before the
user Create statement is executed:

sp_addlogin %Name% %Password$
go

The automatically generated login will have the same name as the user, and its password. The BeforeCreate
statement is displayed before the user creation statement in the Preview:

Customizing and Extending PowerDesigner
142 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

User Properties - User_1 [User_1]

Dependencies I Extended Dependencies I YWerzion [nfa
General I Frivileges I Permizzionz Presview | MHotesz I Rulez
B-B-HEh iRl o BEBR
gp_dropuser User_ 1 ;I
i [a]

gp_addlogin User_ 1 password

gp_adduser Tser_1
i (]

S saL / <] .-
<% Less | - ok, I Eancell £pply | Help |

Example - Modify Statements

You can also add BeforeModi fy and AfterModi fy statements to standard Modi fy statements.

Modify statements are executed to synchronize the database with the schema created in the PDM. By default, the
modify database feature does not take into account extended attributes when it compares changes performed in
the model from the last generation. You can bypass this rule by adding extended attributes in the
ModifiableAttributes listitem. Extended attributes defined in this list will be taken into account in the merge
dialog box during database synchronization.

To detect that an extended attribute value has been modified you can use the following variables:

® 3OLDOBJECTS - to access an old value of the object

® NEWOBJECTS - to access a new value of the object

For example, you can verify that the value of the extended attribute ExtTablePartition has been modified
using the following GTL syntax:

.if (%OLDOBJECT.ExtTablePartition% != $SNEWOBJECT.ExtTablePartition$%)

If the extended attribute value was changed, an extended statement will be generated to update the database. In
the ASE syntax, the Modi fyPartition extended statement is the following because in case of partition change
you need to delete the previous partition and then recreate it:

.1f (%OLDOBJECT .ExtTablePartition% != $NEWOBJECT.ExtTablePartition%)

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 143

.1f (SNEWOBJECT.ExtTablePartition% > 1)
.if (%OLDOBJECT.ExtTablePartition% > 1)
$DropPartition$%
.endif
$CreatePartition$%
.else
$DropPartition$%
.endif
.endif

4.2.2 Script Reverse Engineering

PowerDesigner can reverse engineer SQL scripts into a PDM. The statements that control script generation are
available inthe script/Objects category.

When reverse-engineering a SQL script into a PDM, PowerDesigner compares each statement in turn with all of
the Create statements defined in the DBMS definition file and when it finds a match, extracts all of the available
information to create or update PDM objects.

The statements used in script reverse engineering are the same as those for script generation (see Script
Generation [page 141]).

For example, in IQ v15.2, the Create statement in the Table category is the following:

create[$ExtGlobalTemporaryTable%? global temporary] table [%QUALIFIERS]STABLES (
$STABLDEFN%

)[.Z:[[%R%?[.0:[1in] [on]] %DBSpace%: [%$DBSpace%?

in %DBSpaceGeneratedName$%]]] [

on commit %OnCommit%] [$NotTransactional$%? not transactional] [

at %$.g:At%] [$R%?partition by range %RevPartition%:[$PartitionKey%$?[%hasLifecycle

oe
J

partition by range (%PartitionKey.Code%)
(

$PartitionDef$%

) 111

This statement contains the parameters for creating the table together with its owner and physical options using
variables (see Variables for Tables and Views [page 234]) that extract the necessary information from the
object's properties.

If you are using the extension mechanism for script generation, you have to declare statements in the list item
ReversedStatements (one statement per line) for them to be properly reversed.

For example, the extension statement AfterCreate uses CreatePartition, which must be declared in
ReversedStatements to be properly reverse engineered:

Customizing and Extending PowerDesigner
144 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

r DBEMS Properties [For All Models]

General | Trigger Templalesl Trigger Template Itemsl

b o IS_I,II::ase.f-'-.S Enterprize 12.5:Scrpt0bjects\T able\ReversedStatements

i [=] E3

=

=3

Table

[Permiszion

) AddTableCheck
j AfterCreate

5 Aftertdadity

5 AlterT ableFooter
j AlerT ableHeader
) ConstMame

5 Create

% CreatePartition

5| DefOptions

5| DefineT ableCheck
3 Drap

2 CropPartition

5 DropTableCheck
| Modifiabledttributes
21 ModifyPartition

5 Optionz

| Rename

|| ReversedStatements

_j SqlesktrClueny

N

Marme: ReversedStatements

Comment: |Additional statements which can be reversed

Walue:

-

CreatePartition
Statement?
Statementd

(] I Cancel Apply

Help

4.2.3 Live Database Generation

PowerDesigner can generate or modify a database from a PDM to a live connection. The statements that control
live generation are available in the script/Objects category, except when the DBMS does not support standard
SQL syntax. For example, MS Access, which needs VB scripts to create database objects, has special generation

statements defined in the ODBC category.

When generating to a live connection, PowerDesigner takes each object to be created in turn, and applies the
appropriate Create or other statement to create or modify the object.

The statements used in live generation are the same as those for script generation (see Script Generation [page

141]).

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

145

4.2.4 Live Database Reverse Engineering

PowerDesigner can reverse engineer from a live database connection into a PDM. The queries that control live
reverse engineering are available in the script/Objects category.

The following queries are used in live reverse engineering:

SglListQuery - Retrieves a list of available objects to populate the Database Reverse Engineering dialog.
This query is memory intensive, and should retrieve the smallest number of columns possible. If it is not
defined, then sqlAttrQuery will be used to populate the dialog.

SqglAttrQuery - Retrieves the object attributes to be reverse-engineered. This query is not necessary if the
object has few attributes, and the sqlListQuery can retrieve all necessary information, as is the case for
tablespaces in SQL Anywhere.

SqlOptsQuery - Retrieves the physical options to be reverse-engineered.

SglListChildrenQuery - Retrieves lists of child objects (such as columns of an index or key or joins of a
reference) to be reverse-engineered.

SqglSysIndexQuery - Retrieves system indexes created by the database.

SglChckQuery - Retrieves object check constraints.

SglPermQuery - Retrieves object permissions.

1 Note

You can also create your own queries (see Creating Queries to Retrieve Additional Attributes [page 148]).

Each type of query has the same basic structure comprised of a comma-separated list of PowerDesigner
variables enclosed in curly braces { } followed by a select statement to extract values to populate these variables.
The values of the returned records are stored in these variables, which are then committed as object attribute
values.

For example, the sqlListQuery inthe View category of Oracle 11g R1 extracts values for eight variables:

{OWNER, VIEW, VIEWSTYLE, ExtObjViewType,

ExtObjOIDList, ExtObjSuperView, XMLSCHEMA EX, XMLELEMENT EX}

select

v.owner,

v.view name,

decode (v.view type, 'XMLTYPE', 'XML', 'View'),

v.view type,

v.oid text,

v.superview name,

decode (v.view type, 'XMLTYPE', '3SglXMLView.'||v.owner||v.view name]||'1l% VU,
decode (v.view type, 'XMLTYPE', '3%SglXMLView.'||v.owner||v.view name]|'2%', '")

from sys.all views v
[where v.owner = $.q:SCHEMAS]

Each comma-separated part of the header may contain the following:

146

Name of variable - [required] can be any standard PDM variable (see PDM Variables and Macros [page 2307),
metamodel public name (see Navigating in the Metamodel [page 367]) or the name of an extended attribute
defined under the metaclass in the Profile (see Profile Category (DBMS) [page 218]).

1D - [optional] the variable is part of the identifier.

... - [optional] the variable must be concatenated for all the lines returned by the SQL query that have the
same values for the ID columns. The 1D and . . . (ellipsis) keywords are mutually exclusive.

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

e Value pairs - [optional] lists conversions between retrieved values and PowerDesigner values in the following
format (where * means all other values):

(valuel = PDvaluel, value2 = PDvalue2, * = PDvalue3)

Example: Using ID to Define the Identifier

In this script, the identifier is defined as TABLE + ISKEY+ CONSTNAME through the use of the 1D keyword:

{TABLE ID, ISPKEY ID, CONSTNAME ID, COLUMNS ...}
select

t.table name,

1,

null,

c.column name + ', ',
c.column id

from

systable t,

syscolumn c
where

etc..

In the resulting lines returned by the SQL script, the values of the fourth field are concatenated in the COLUMNS
field as long as these ID values are identical.

SQL Result set

Tablel,1,null, 'coll,"'
Tablel,1,null, 'col2,"
Tablel,1l,null, 'col3,"
Table2,1,null, 'col4, "'

In PowerDesigner memory
Tablel,1,null, 'coll,col2,col3"
Table2,1,null, 'cold'

In the example, COLUMNS will contain the list of columns separated by commas, and PowerDesigner will process
the contents to remove the last comma.

Example: Converting Value Pairs

In this example, when the SQL query returns the value 25 or 26, it is replaced by JavA in the TYPE variable:

{ADT, OWNER, TYPE (25=JAVA , 26=JAVA) }

SELECT t.type name, u.user name, t.domain id
FROM sysusertype t, sysuserperms u

WHERE [u.user name = '%SCHEMA%' AND]
(domain id = 25 OR domain id = 26) AND
t.creator = u.user id

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

147

4241 Creating Queries to Retrieve Additional Attributes

You can create queries to retrieve additional attributes. These attributes could be added to Sq1AttrQuery, but
retrieving them in a separate query helps to avoid overloading that item. User-created queries are only called
during reverse-engineering if their names are added to the ReversedQueries item.

To create a new query in a category, right-click the category and select |+ New » Text Item 3. Enter an
appropriate name, and then add the name to the ReversedQueries item.

For example, in the Oracle family of DBMSs, SqlColnListQuery is defined in the View category:

{OWNER ID, VIEW ID, VIEWCOLN ...}
select
c.owner,
c.table name,
c.column name| |"', '
from
sys.all tab columns c
where 1 =1

[and c.owner=%.q:0WNER%]

[and c.table name=%.q:VIEW%]
order by

1, 2, c.column id

This query retrieves view columns, and is enabled by adding it to ReversedQueries in the View category.

1 Note

Subqueries that are called with the Ex keyword from within SqlAttrQuery or other queries (see Calling Sub-
Queries with the EX Keyword [page 148]) do not need to be added to ReversedQueries.

4.2.4.2 Calling Sub-Queries with the EX Keyword

DBMS system tables may store information to be reversed in columns with LONG, BLOB, TEXT and other
incompatible data types, which PowerDesigner cannot directly concatenate into strings.

Context

You can bypass this limitation by using the EX keyword and creating user-defined queries and variables in the
existing reverse engineering queries with the syntax:

$UserDefinedQueryName.UserDefinedVariableName$

These user-defined variables are evaluated by sub-queries that you write.

Customizing and Extending PowerDesigner
148 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

In the following example, the value of OPTIONS is marked as containing a user-defined query, and we see in the
body of the query that the 'global partition by range' option contains a user-defined query
called :'SqlPartindexDef', which seeks values for the variables 'i.owner' and 'i.index_name":

{OWNER, TABLE, CONSTNAME, OPTIONS EX}
select

c.owner,

c.table name,

c.constraint name,

'global partition by range
(3SglPartIndexDef.'||i.owner||i.index name||'%) "',

1 Note

Extended queries are not be added to the ReversedQueries item.

Procedure

1. A query is executed to evaluate variables in a set of string statements. If the EX keyword is present in the
query header, PowerDesigner searches for user-defined queries and variables to evaluate. You can create
user-defined queries in any live database reverse engineering query. Each query must have a unique name.

2. The execution of the user-defined query generates a resultset containing pairs of user-defined variable names
(without %) and variable value for each of the variables as needed. For example, in the following resultset, the
query returns 3 rows and 4 columns by row:

Table 46:
Variable 1 ‘ 1 Variable 2 ’ 2
Variable 3 3 Variable 4 4
Variable 5 5 Variable 6 6

3. These values replace the user-defined variables in the original query.

4.2.4.3 Live Database Reverse Engineering Physical Options

During reverse engineering, physical options are concatenated in a single string statement. However, when the
system tables of a database are partitioned (like in Oracle) or fragmented (like in Informix), the partitions/
fragments share the same logical attributes but their physical properties like storage specifications, are stored in
each partition/fragment of the database. The columns in the partitions/fragments have a data type (LONG) that
allows storing larger amount of unstructured binary information.

Since physical options in these columns cannot be concatenated in the string statement during reverse
engineering, SqloptsQuery (Tables category in the DBMS) contains a call to a user-defined query that will
evaluate these physical options.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 149

In Informix SQL 9, sqloptsQuery is delivered by default with the following user-defined queries and variables
(the following is a subset of SgloptsQuery):

select
t.owner,
t.tabname,
'$SglFragQuery.FragSprt'||f.evalpos||'% $FragExpr'||f.evalpos||'S in $FragDbsp'| |
f.evalpos||['% ',
f.evalpos
from
informix.systables t,
informix.sysfragments f
where
t.partnum = 0
and t.tabid=f.tabid
[and t.owner = '$SCHEMAS']
[and t.tabname='S$TABLES']

After the execution of SgloptsQuery, the user-defined query SqlFragQuery is executed to evaluateFragbbsp
<n>, FragExpr <n>,and FragSprt <n. n> standsfor evalpos which defines fragment position in the
fragmentation list. n allows to assign unique names to variables, whatever the number of fragment defined in the
table.

FragDbsp <n>, FragExpr <n>,and FragSprt <n> are user-defined variables that will be evaluated to recover
information concerning the physical options of fragments in the database:

Table 47

User-defined variable ’Physkalopﬁons

FragDbsp <n> Fragment location for fragment number <n>
FragExpr <n> Fragment expression for fragment number <n>
FragSprt <n> Fragment separator for fragment number <n>

SglFragQuery is defined as follows:

{A, a(E="expression", R="round robin", H="hash"), B, b, C, ¢, D, d(0o="", *=",")}
select
'FragDbsp'| |f.evalpos, f.dbspace,
'FragExpr'| |f.evalpos, f.exprtext,
'FragSprt'||f.evalpos, f.evalpos
from
informix.systables t,
informix.sysfragments f
where
t.partnum = 0
and f.fragtype='T'
and t.tabid=f.tabid
[and t.owner = '$SCHEMAS']
[and t.tabname='S$TABLES']

The header of SqlFragQuery contains the following variable names.
{A, a(E="expression", R="round robin", H="hash"), B, b, C, c, D, d(0o="", *=",6,")}

Only the translation rules defined between brackets will be used during string concatenation: "FragSprt0", which
contains O (f.evalpos), will be replaced by " "

,and "FragSprtl", which contains 1, will be replaced by ",

Customizing and Extending PowerDesigner
150 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

SqglFragQuery generates a numbered resultset containing as many pairs of user-defined variable name (without
%) and variable value as needed, if there are many variables to evaluate.

The user-defined variable names are replaced by their values in the string statement for the physical options of
fragments in the database.

4.2.4.4 Live Database Reverse Engineering Function-based
Index

In Oracle 8i and later versions, you can create indexes based on functions and expressions that involve one or
more columns in the table being indexed. A function-based index precomputes the value of the function or
expression and stores it in the index. The function or the expression will replace the index column in the index
definition.

An index column with an expression is stored in system tables with a LONG data type that cannot be
concatenated in a string statement during reverse engineering.

To bypass this limitation, SqlListQuery (Index category in the DBMS) contains a call to the user-defined query
SqlExpression used to recover the index expression in a column with the LONG data type and concatenate this
value in a string statement (the following is a subset of SqlListQuery):

select
'$SCHEMAS ',
i.table name,
i.index name,

decode (i.index type, 'BITMAP', 'bitmap', ''),

decode (substr (c.column name, 1, 6), 'SYS NC', '%SglExpression.Xpr'||i.table name]| |
i.index name||c.column position||'%', c.column name) ||' '||c.descend||"', ',
c.column position

from

user indexes i,

user ind columns c
where

c.table name=i.table name

and c.index name=i.index name

[and i.table owner='3%SCHEMA%']
[and i.table name='S$TABLE%']

[and i.index name='S%INDEX%']

The execution of sq1ListQuery calls the execution of the user-defined query SqlExpression.

SqglExpression is followed by a user-defined variable defined as follow:

{VAR, VAL}

select
'Xpr'| |table name| |index name| |column position,
column expression

from

all ind expressions

where 1=1

[and table owner='3%SCHEMA%']

[and table name='3%TABLES']

The name of the user-defined variable is unique, it is the result of the concatenation of "Xpr", table name, index

name, and column position.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 151

4.2.45 Live Database Reverse Engineering Qualifiers

A qualifier allows the use of the object qualifier that is displayed in the dropdown list box in the upper left corner of
the Database Reverse Engineering dialog box. You use a qualifier to select which objects are to be reverse
engineered.

Database Reverse Engineering

[<tl qualfiers> =[5 pBa R R A R T
| Code | wrer | I amne -
] contact DBA contact
] custamer DEA, CLztanmer b
=z | departrment DA department
H employee DB employes =
1 | r

F

4 [\Table ,&View }\System Tahle }gSynl:unym }\I.Iser LGrnup }gHDIe }HDl:umain }gDefaurt J

¥ Primary Keys ¥ Alemnate Keys W Checks [Pemizsions
¥ Forignkey: W Indeses ¥ Phyzical options [~ Statistics

Objectz] zelected: 9/9

selection: |<Default Selection: jIE
] 8 I Cancel | Help |

You can add a qualifier section when you customize your DBMS. This section must contain the following items:

® cnable: YES/NO
® SgllistQuery (script) :thisitem contains the SQL query that is executed to retrieve the qualifier list.
You should not add a Header to this query

The effect of these items are shown in the table below:

Table 48:
Enable ’ SqlListQuery present? Result
Yes Yes Qualifiers are available for selection. Select one as required. You can also type
the name of a qualifier. SqlListQuery is executed to fill the qualifier list
No Only the default (All qualifiers) is selected. You can also type the name of a
qualifier
No No Dropdown list box is grayed.

Customizing and Extending PowerDesigner
152 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Example

In Adaptive Server Anywhere 7, a typical qualifier query is:

.Qualifier.SglListQuery :
select dbspace name from sysfile

4.2.5 Defining Generation and Reverse-Engineering of New
Metaclasses

You can extend your DBMS to include new metaclasses that are not present in the standard PowerDesigner
metamodel. Many DBMSs contain such metaclasses, which are defined by creating a stereotype on an existing
metaclass, and you can also create your own. To include these objects in generation and reverse-engineering, you
must add them to the script/0Objects category, and define appropriate SQL statements and queries.

Procedure

1. Create a new metaclass in your DBMS definition file by defining a new stereotype on an existing metaclass
and selecting the Use as metaclass option (see Creating New Metaclasses with Stereotypes [page 46]).

2. Define appropriate extended attributes (see Extended Attributes (Profile) [page 48]) and other extensions as
appropriate to accurately define the nature of your object.

3. Right-clickthe script/Objects category, select Add Items, select your new object in the list, and then click
OK to add it to the category.

4. Right-click the new object entry, and select Add Items to add the necessary script items to it. As a minimum,
to enable the generation and reverse engineering of the object, you must add the following items:

O Create
O Drop
O AlterStatementList
O SglAttrQuery
O SglListQuery
5. Click OK to add these script items to your object, and enter the appropriate SQL statements and queries. You

will need to enter values for each of these items. For guidance on syntax, see Common Object Items [page
163].

6. [optional] To control the order in which this and other objects will be generated, use the Generation Order
item (see Script/Objects Category (DBMS) [page 161]).

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 153

4.2.6 Adding Scripts Before or After Generation and Reverse
Engineering

You can specify scripts to be used before or after database generation or reverse engineering.

Procedure

1. Open the Profile folder. If there is no entry for Model, then right-click the Profile folder and select Add
Metaclasses.

2. Onthe PdPDM sub-tab, select Model and then click OK to add the Model item to the Profile folder.
3. Right-click the Model item, and select | New » Event Handler J (see Event Handlers (Profile) [page 901).

4. Select one or more of the following event handlers depending on where you want to add a script:

o

BeforeDatabaseGenerate

[}

AfterDatabaseGenerate

[¢]

BeforeDatabaseReverseEngineer

o

AfterDatabaseReverseEngineer
5. Click OK to add the selected event handlers to the Model item.
6. Select each of the event handlers in turn, click its Event Handler Script tab, and enter the desired script.

7. Click OK to confirm your changes and return to the model.

4.3 General Category (DBMS)

The General category is located directly beneath root, and contains high-level items that define the basic behavior
of the DBMS.

Table 49:

Item Description

EnableCheck Specifies whether the generation of check parameters is authorized. The following settings are
available. If this item is set to No, no variables linked to check parameters will be evaluated during
generation and reverse-engineering.

EnableConstName Specifies whether constraint names are supported by the DBMS. If this item is set to Yes, table
and column constraint names are generated in addition to the constraints themselves.

Enablelntegrity Specifies whether integrity constraints are supported by the DBMS. If this item is set to Yes, pri-
mary, alternate, and foreign key check boxes are available for database generation and modifica-
tion

Customizing and Extending PowerDesigner
154 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description

EnableMultiCheck Specifies whether the generation of multiple check parameters for tables and columns is sup-
ported by the DBMS. If this item is set to Yes, multiple check parameters are generated, with the
first constraint concatenating all the validation business rules, and additional constraints gener-
ated for each constraint business rules attached to the object. If this item is set to No, all business
rules (validation and constraint) are concatenated into a single constraint expression.

SchemaStereotype Specifies the user stereotype to be used to indicate a schema (object owner).

SqglSupport Specifies whether SQL syntax is supported by the DBMS. If this item is set to Yes, SQL syntax is
supported and the SQL Preview is available.

UnigConstName Specifies whether unique constraint names for objects are required by the DBMS. If this item is
set to Yes, all constraint names (including index names) must be unique in the database. Other-
wise constraint names must be unique only at the object level.

UserStereotype Specifies the user stereotype to be used to indicate a user (permissions grantee).

4.4 Script/Sql Category (DBMS)

The SQL category is located in the [» Root » Script 3 category and contains sub-categories that define the SQL
syntax for the DBMS.

4.4.1 Syntax Category (DBMS)

The Syntax category is located in the |» Root # Script » SQL 3 category, and contains the following items that
define the DBMS-specific syntax:

Table 50:
Item Description
BlockComment Specifies the character used to enclose a multi-line commentary.
Example:
/% %
BlockTerminator Specifies the end of block character, which is used to end expressions for triggers and stored pro-
cedures.
Delimiter Specifies the field separation character.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 155

Item Description

IdentifierDelimiter Specifies the identifier delimiter character. When the beginning and end delimiters are different,
they must be separated by a space character.

LineComment Specifies the character used to enclose a single line commentary.

Example:

oe
oe

Quote Specifies the character used to enclose string values.

Note that the same quote must be used in the Check Parameters tab to enclose reserved words
used as default.

SqlContinue Specifies the continuation character. Some databases require a continuation character when a
statement is longer than a single line. For the correct character, refer to your DBMS documenta-
tion. This character is attached to each line just prior to the linefeed.

Terminator Specifies the end of statement character, which is used to terminate create table, view, index, or
the open/close database, and other statements.

Ifempty, BlockTerminator is used instead.

UseBlockTerm Specifies the use of BlockTerminator. The following settings are available:

® Yes-BlockTerminator isalways used

e No-BlockTerminator isused for triggers and stored procedures only

4.4.2 Format Category (DBMS)

The Format category is located in the [Root # Script » SQL J category, and contains the following items that
define script formatting:

Table 51:
Item Description
AddQuote Specifies that object codes are systematically enquoted during the generation. The following set-
tings are available:
® Yes — Quotes are systematically added to object codes during generation
e No - Object codes are generated without quotes
CaseSensitivityUsing- Specifies if the case sensitivity for identifiers is managed using double quotes. Enable this option if
Quote the DBMS you are using needs double quotes to preserve the case of object codes.

Customizing and Extending PowerDesigner
156 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description
DateTimeFormat / Odbc- | Specify the format for generating date and time test data to a script or live database connection.
DateTimeFormat / Date- | o yyyy/yy. mm, dd - Years, months, and days.
Format / OdbcDateFor-
) ® HH, MM, SS - Hours, minutes, and seconds.
mat / TimeFormat /
OdbcTimeFormat For example, you can define the following value for the DateTimeFormat item for SQL: yy-
mm-dd HH:MM.
Consultthe Script\DataType\PhysDataType item (see Script/Data Type Category
(DBMS) [page 216]) to see how PowerDesigner converts the date and time data types in your
DBMS into its internal conceptual data types.
EnableOwnerPrefix / Ena- | Specifies that object codes can be prefixed by the object owner (30WNER$%), the database name
bleDtbsPrefix ($DBPREFIX$%), or both ($QUALIFIERY). The following settings are available:
® Yes —enables the Owner Prefix and/or Database Prefix options in the Database Generation
dialog to require one or both prefixes for objects.
® No - The Owner Prefix and Database Prefix options are unavailable
1 Note
EnableOwnerPrefix enables the Ignore identifying owner model option for tables and
views.
lllegalChar [generation only] Specifies invalid characters for names. If there is an illegal character in a code,
the code is set between quotes during generation.
Example:
+=*/1=<>1" ()
If the name of the table is "SALES+PROFITS", the generated create statement will be:
CREATE TABLE "SALES+PROFITS"
Double quotes are placed around the table name to indicate that an invalid character is used. Dur-
ing reverse engineering, any illegal character is considered as a separator unless it is located
within a quoted name.
LowerCaseOnly / Upper- | When generating a script, all objects are generated in lowercase or uppercase independently of
CaseOnly the model Naming Conventions and the PDM codes. The following settings are available:
® Yes - Forces all generated script characters to lowercase or uppercase.
e No - Generates all scripts unchanged from the way objects are written in the model.
1 Note
These items are mutually exclusive. If both are enabled, the script is generated in lowercase.
MaxScriptLen Specifies the maximum length of a script line.

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 157

4.4.3 File Category (DBMS)

The File category is located in the | Root » Script » SQL J category, and contains the following items that define

script formatting:

Table 52:

Item

AlterHeader

Description

Specifies header text for a modify database script.

AlterFooter

Specifies footer text for a modify database script.

EnableMultiFile

Specifies that multiple scripts are allowed. The following settings are available:

® Yes —enables the One File Only check box in the Generate database, Generate Triggers and
Procedures, and Modify Database parameters windows. If you deselect this option, a sepa-
rate script is created for each table (named after the table, and with the extension defined in
the TableExt item), and a global script summarizes all the single table script items.

e The One File Only check box is unavailable, and a single script includes all the statements.

The file name of the global script is customizable in the File Name field of the generation or modifi-
cation windows and has the extension specified in the ScriptExt item.

The default name for the global script is CREBAS for database generation, CRETRG for triggers
and stored procedures generation, and ALTER for database modification.

Footer

Specifies the text for the database generation script footer.

Header

Specifies the text for the database generation script header.

ScriptExt

Specifies the default script extension when you generate a database or modify a database for the
first time.

Example:

sql

StartCommand

Specifies the statement for executing a script. Used inside the header file of a multi-file generation
to call all the other generated files from the header file.

Example (SAP ASE 16):
isgl SNAMESCRIPTS

Corresponds to the %STARTCMD% variable (see PDM Variables and Macros [page 230]).

TableExt

Specifies the extension of the scripts used to generate each table when the EnableMultiFile item is
enabled and the One File Only check box is not selected in the Generate or Modify windows.

Example:

sql

Customizing and Extending PowerDesigner

158 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description

TrgFooter Specifies footer text for a triggers and procedures generation script.

TrgHeader Header script for triggers and procedures generation.

TrgUsagel [when using a single script] Specifies text to display in the Output window at the end of trigger and
procedure generation.

TrgUsage?2 [when using multiple scripts] Specifies text to display in the Output window at the end of trigger
and procedure generation.

TriggerExt Specifies the main script extension when you generate triggers and stored procedures for the first
time.
Example:

trg

Usagel [when using a single script] Specifies text to display in the Output window at the end of database
generation.

Usage?2 [when using multiple scripts] Specifies text to display in the Output window at the end of database
generation.

4.4.4 Keywords Category (DBMS)

The Keywords category is located in the [Root # Script » SOL J category, and contains the following items that
reserve keywords.

The lists of SQL functions and operators are used to populate the PowerDesigner SQL editor to propose lists of
available functions to help in entering SQL code.

Table 53:
Item Description
CharFunc Specifies a list of SQL functions to use with characters and strings.
Example:
char ()
charindex ()
char length() etc
Commit Specifies a statement for validating the transaction by live connection.
ConvertAnyToString Specifies a function to convert any type to a string.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 159

Item

ConvertDateToMonth,
ConvertDateToQuarter,
ConvertDateToYear

Description

Specifies a function to extract the relevant period from a date.

ConvertFunc

Specifies a list of SQL functions to use when converting values between hex and integer and han-
dling strings.

Example:
convert ()

hextoint ()
inttohex () etc

DateFunc

Specifies a list of SQL functions to use with dates.

Example:

dateadd ()
datediff ()
datename () etc

GroupFunc

Specifies a list of SQL functions to use with group keywords.

Example:

avg ()
count ()
max () etc

ListOperators

Specifies a list of SQL operators to use when comparing values, boolean, and various semantic op-
erators.

Example:

not like etc

NumberFunc

Specifies a list of SQL functions to use with numbers.

Example:

abs ()
acos ()
asin() etc

OtherFunc

Specifies a list of SQL functions to use when estimating, concatenating and SQL checks.

Example:

db_id()
db name ()
host id() etc

Customizing and Extending PowerDesigner

160 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description
Reserved Default Specifies a list of keywords that may be used as default values. If a reserved word is used as a
default value, it will not be enquoted.
Example (SAP® SQL Anywhere® 10) - USER is a reserved default value:
Create table CUSTOMER (
Username varchar (30) default USER
)
When you run this script, CURRENT DATE is recognized as a reserved default value.
ReservedWord Specifies a list of reserved keywords. If a reserved word is used as an object code, it is enquoted
during generation (using quotes only in |} DBMS > Script > SQL > Syntax > Quote }).
StringConcatenationOp- Specifies the operator used to concatenate two strings.
erator

4.5 Script/Objects Category (DBMS)

The Objects category is located in the [+ Root ¥ Script » SOL 3 category (and, possibly within | Root » ODBC
SOL), and contains the following items that define the database objects that will be available in your model.

The following items are located in the [Root » Script » Objects dand | Root » ODBC » Objects J categories,
and apply to all objects:

e MaxConstlLen - Specifies the maximum constraint name length supported by the target database for tables,
columns, primary and foreign keys. This value is used during model checking and returns an error if the code
exceeds the defined value. The constraint name is also truncated at generation time.

1 Note

PowerDesigner has a maximum length of 254 characters for constraint names. If your database supports
longer constraint names, you must define the constraint names to fit in 254 characters or less.

e EnableOption - Specifies that physical options are supported by the target DBMS for the model, tables,
indexes, alternate keys, and other objects and enables the display of the Options tab in object property
sheets. For more information, see Physical Options (DBMS) [page 224].

e GenerationOrder - Specifies the generation order of database objects. Drag and drop entries in the Ordered
List tab to adjust the order in which objects will be created.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 161

{ DBMS Properties (For All Models) _ O] x|

General | Trigger Templates I Trigger Template ltems I Procedure Templates I

|- = - IDH.-‘E-.ELE'IDg::Script'\Dbiects'\.GeneratiDnDrder j - %k
% ﬁ:ztrran:t Data Type Procedure ;l Name: T
D Procedure Comment; | This lizt defines the objects generation order. | =
-2 Trigger j
-2 Jain Index
[:l Sequence LI
I:I Synanyn
[:l Role Ordered List |><ML |
-] DB Package
[:l DE Package Procedurs gy B

Cl DB Package Warable | || s X

[:l DE Package Type || ¥ gt

-Z1 DE Package Cursor

[:l DB Package Exception Storage

D Pararater Tal:-.lespace

[:l DB Package Pragma rm BusinessHule

-2 Privilege E Sequence o
[:l Parmizsion - % Sequence::Pemission
: B AbstractDataType

: - Edlz-:l-:?:nnsr:ﬂs?Len % AbztractD ataT ppe:: Permizzion
(=@ PhysicalDefault

PhyzizalDomain
| zer

K, I Cancel Apply Help

[T Y WA

1 Note

If an object does not appear on the list, it will still be generated, but after the listed objects. You can add and
remove items using the tools on the tab. Sub-objects, such as Sequence: : Permissions, can be placed
directly below their parent object in the list (where they will be indented to demonstrate their parentage) or
separately, in which case they will be displayed without indentation. Extended objects (see Defining
Generation and Reverse-Engineering of New Metaclasses [page 153]) cannot be added to this list, and are
generated after all other objects.

Customizing and Extending PowerDesigner
162 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.1 Common Object Iltems

The following items are available in various objects located in the [» Root » Script » Objects 3 category.

Table 54:
Item Description
Add Specifies the statement required to add the object inside the creation statement of another
object.
Example (adding a column):
%$20:COLUMNS %$30:DATATYPES [default $DEFAULTS] [$IDENTITYS?
identity: [$NULL%] [$NOTNULLS]]
[[constraint $CONSTNAMES] check ($CONSTRAINTS)]
Alter Specifies the statement required to alter the object.
AlterDBIgnored Specifies a list of attributes that should be ignored when performing a comparison before
launching an update database.
AlterStatementList Specifies a list of attributes which, when changed, should give rise to an alter statement. Each

attribute in the list is mapped to the alter statement that should be used.

BeforeCreate/ AfterCreate /
BeforeDrop / AfterDrop / Be-

Specify extended statements executed before or after the main Create, Drop or Modify state-
ments (see Script Generation [page 141]).

foreModify / AfterModify
ConstName Specifies a constraint name template for the object. The template controls how the name of
the object will be generated.
The template applies to all the objects of this type for which you have not defined an individual
constraint name. The constraint name that will be applied to an object is displayed in its prop-
erty sheet.
Examples (ASE 15):
e Table: CKT_%.U26:TABLE%
e Column: CKC_%.U17:COLUMN%_%.U8:TABLE%
® Primary Key: PK_%.U27:TABLE%
Create [generation and reverse] Specifies the statement required to create the object.

Example:

create table $TABLES

Customizing and Extending PowerDesigner
DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 163

Item Description
DefOptions Specifies default values for physical options (see Physical Options (DBMS) [page 224]) that
will be applied to all objects. These values must respect SQL syntax.
Example:
in default tablespace
Drop Specifies the statement required to drop the object.
Example (SQL Anywhere 10):
if exists(select 1 from sys.systable
where table name=%.q:TABLES
and table type in ('BASE', 'GBL TEMP') [3QUALIFIER%?
and creator=user id(%.q:O0OWNERS%)]
) then drop table [$QUALIFIERS]%TABLES
end if
Enable Specifies whether an object is supported.

EnableOwner

Enables the definition of owners for the object. The object owner can differ from the owner of
the parent table. The following settings are available:

® Yes- The Owner listis enabled in the object's property sheet.

e No - Owners are not supported for the object.

Note that, in the case of index owners, you must ensure that the Create statement takes into
account the table and index owner. For example, in Oracle 9i, the Create statement of an index
is the following:

create [JUNIQUES?SUNIQUES :[SINDEXTYPES]]index [%$QUALIFIERS]
$INDEX% on [3CLUSTER%?cluster C STABLES%: [$TABLQUALIFIERS]
$TABLES (

SCIDXLISTS

)]

[$OPTIONS%]

Where %QUALIFIER% refers to the current object (index) and % TABLQUALIFIER% refers to
the parent table of the index.

EnableSynonym

Enables support for synonyms on the object.

Footer / Header

Specify the object footer and header. The contents are inserted directly after or before each
create object statement.

MaxConstLen Specifies the maximum constraint name length supported for the object in the target data-
base, where this value differs from the default specified in MaxConstLen (see .Script/
Objects Category (DBMS) [page 161]).

MaxLen Specifies the maximum code length for an object. This value is used when checking the model

and produces an error if the code exceeds the defined value. The object code is also truncated
at generation time.

Customizing and Extending PowerDesigner

164 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item

ModifiableAttributes

Description

Specifies a list of extended attributes that will be taken into account in the merge dialog during

database synchronization (see Script Generation [page 141]).

Example (ASE 12.5):

ExtTablePartition

Options

Specifies physical options (see Physical Options (DBMS) [page 2241]) available to apply when
creating an object.

Example (ASA 6):

in %s : category=tablespace

Permission

Specifies a list of available permissions for the object. The first column is the SQL name of per-
mission (SELECT for example), and the second column is the shortname that is displayed in

the title of grid columns.

Example (table permissions in ASE 15):

SELECT / Sel
INSER / Ins
DELETE / Del
UPDATE / Upd
REFERENCES / Ref

ReversedQueries

Specifies a list of additional attribute queries to be called during live database reverse engi-
neering (see Live Database Reverse Engineering [page 146]).

ReversedStatements Specifies a list of additional statements that will be reverse engineered (see Script Reverse En-
gineering [page 1441]).
SqglAttrQuery Specifies a SQL query to retrieve additional information on objects reversed by

SQLListQuery

Example (Join Index in Oracle 10g):

{OWNER ID, JIDX ID, JIDXWHERE ...}

select index owner, index name,

outer table owner || '.' || outer table name || '.' ||
outer table column || '=' || inner table owner || '.' ||
inner table name || '.' || inner table column || ','

from gll_j oIn_ind_columns
where 1=1

[and index owner=%.q:0WNERS%]
[and index name=%.q:JIDX%]

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 165

Item

SqlListQuery

Description

Specifies a SQL query for listing objects in the reverse engineering dialog. The query is exe-
cuted to fill header variables and create objects in memory.

Example (Dimension in Oracle 10g):

{ OWNER, DIMENSION }

select d.owner, d.dimension name

from sys.all dimensions d

where 1=1

[and d.dimension name=%.q:DIMENSIONS]
[and d.owner=%.qg:SCHEMAS%]

order by d.owner, d.dimension name

SqlOptsQuery

Specifies a SQL query to retrieve physical options from objects reversed by SqlListQuery.
The result of the query will fill the variable %OPTIONS% and must respect SQL syntax.

Example (Table in SQL Anywhere 10):

{OWNER, TABLE, OPTIONS}
select u.user name, t.table name,
'in '+ f.dbspace name
from sys.sysuserperms u
join sys.systab t on (t.creator = u.user id)
join sys.sysfile f on (f.file id = t.file id)
where f.dbspace name <> 'SYSTEM'
and t.table type in (1, 3, 4)
[and t.table name = %.q:TABLE%]
[and u.user name = %.q:0WNERS%]

SqglPermQuery

Specifies a SQL query to reverse engineer permissions granted on the object.

Example (Procedure in SQL Anywhere 10):

{ GRANTEE, PERMISSION}

select

u.user name grantee, 'EXECUTE'

from sysuserperms u, sysprocedure s, sysprocperm p
where (s.proc name = %$.q:PROC%) and

(s.proc_id = p.proc id) and

(u.user id = p.grantee)

Default Variable

In a column, if the type of the default variable is text or string, the query must retrieve the value of the default
variable between quotes. Most DBMS automatically add these quotes to the value of the default variable. If the
DBMS you are using does not add quotes automatically, you have to specify it in the different queries using the

default variable.

For example, in IBM DB2 UDB 8 for 0S/390, the following line has been added in SqlListQuery in order to add
quotes to the value of the default variable:

Customizing and Extending PowerDesigner

166 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

case (default) when '1l' then '''' concat defaultvalue concat '''' when '5' then
'''"'" concat defaultvalue concat '''' else defaultvalue end,

4.5.2 Table Category (DBMS)

The Table category is located in the |* Root ¥ Script » Objects category, and can contain the following items
that define how tables are modeled for your DBMS.

Table 55:
Item Description
[Common items] The following common object items may be defined for tables:
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e ConstName
e Create, Drop
e FEnable, EnableSynonym
® Header, Footer
e Maxlen, MaxConstLen
e ModifiableAttributes
e QOptions, DefOptions
® Permission
e ReversedQueries, ReversedStatements
e SqlAttrQuery, SglListQuery, SglOptsQuery, SglPermQuery
For a description of each of these common items, see Common Object Items [page 163].
AddTableCheck Specifies a statement for customizing the script to modify the table constraints withinanalter
tablestatement.
Example (SQL Anywhere 10):
alter table [%QUALIFIER%]%TABLES
add [constraint $CONSTNAMES]check (%.A:CONSTRAINTS)
AllowedADT Specifies a list of abstract data types on which a table can be based. This list populates the Based
On field of the table property sheet.
You can assign an abstract data type to a table, the table will use the properties of the type and
the type attributes become table columns.
Example (Oracle 10g):
OBJECT

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 167

Item

AlterTable Footer

Description

Specifies a statement to be placed after alter table statements (and before the termina-
tor).

Example:

AlterTableFooter = /* End of alter statement */

AlterTable Header Specifies a statement to be placed before alter talble statements. You can place an alter
table header in your scripts to document or perform initialization logic.
Example:
AlterTableHeader = /* Table name: $TABLE% */
DefineTable Check Specifies a statement for customizing the script of table constraints (checks) withina create
table statement.
Example:
check (%$CONSTRAINTS)
DropTable Check Specifies a statement for dropping a table checkinanalter table statement.

Example:

alter table [$QUALIFIERS%]%TABLES
delete check

InsertldentityOff

Specifies a statement for enabling insertion of data into a table containing an identity column.

Example (ASE 15):

set identity insert [%QUALIFIER%]%Q@OBJTCODE% off

InsertldentityOn

Specifies a statement for disabling insertion of data into a table containing an identity column.

Example (ASE 15):

set identity insert [%QUALIFIER%]3%Q@OBJTCODES on

Customizing and Extending PowerDesigner

168 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item

Rename

Description

[modify] Specifies a statement for renaming a table. If not specified, the modify database proc-
ess drops the foreign key constraints, creates a new table with the new name, inserts the rows
from the old table in the new table, and creates the indexes and constraints on the new table us-
ing temporary tables.

Example (Oracle 10g):
rename 3%OLDTABL% to SNEWTABLS

The %OLDTABL% variable is the code of the table before renaming, and the %NEWTABL% vari-
able is the new code.

SqlChckQuery

Specifies a SQL query to reverse engineer table checks.

Example (SQL Anywhere 10):

{OWNER, TABLE, CONSTNAME, CONSTRAINT}
select u.user name, t.table name,
k.constraint name,
case (lcase(left (h.check defn, 5))) when 'check' then
substring (h.check defn, 6) else h.check defn end
from sys.sysconstraint k
join sys.syscheck h on (h.check id = k.constraint id)
join sys.systab t on (t.object id = k.table object id)
join sys.sysuserperms u on (u.user id = t.creator)
where k.constraint type = 'T'
and t.table type in (1, 3, 4)
[and u.user name = %.q:0WNER%]
[and t.table name = %.q:TABLE%]
order by 1, 2, 3

SqlListRefr Tables

Specifies a SQL query used to list the tables referenced by a table.

Example (Oracle 10g):

{OWNER, TABLE, POWNER, PARENT}
select c.owner, c.table name, r.owner,
r.table name
from sys.all constraints c,
sys.all constraints r
where (c.constraint type = 'R' and c.r constraint name
r.constraint name and c.r owner = r.owner)
[and c.owner = %.q:SCHEMA%]
[and c.table name = %.q:TABLE%]
union select c.owner, c.table name,
r.owner, r.table name
from sys.all constraints c,
sys.all constraints r
where (r.constraint type = 'R' and r.r constraint name
c.constraint name and r.r owner = c.owner)
[and c.owner = %.q:SCHEMA%]
[and c.table name = %.q:TABLE%]

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 169

Item

SqlListSchema

Description

Specifies a query used to retrieve registered schemas in the database. This item is used with ta-
bles of XML type (a reference to an XML document stored in the database).

When you define an XML table, you need to retrieve the XML documents registered in the data-
base in order to assign one document to the table, this is done using the SqlListSchema query.

Example (Oracle 10g):

SELECT schema url FROM dba xml schemas

SqlStatistics Specifies a SQL query to reverse engineer column and table statistics. See SqlStatistics in Col-
umn Category (DBMS) [page 171].
SqlXMLTable Specifies a sub-query used to improve the performance of SqlAttrQuery (see Common Object

Iltems [page 163]).

TableComment

[generation and reverse] Specifies a statement for adding a table comment. If not specified, the
Comment check box in the Tables and Views tabs of the Database Generation dialog box is un-
available.

Example (Oracle 10g):

comment on table [%$QUALIFIER%]S$TABLES is
% .q:COMMENTS

The %TABLE% variable is the name of the table defined in the List of Tables, or in the table prop-
erty sheet. The % COMMENT% variable is the comment defined in the Comment textbox of the
table property sheet.

TypelList

Specifies a list of types (for example, DBMS: relational, object, XML) for tables. This list popu-
lates the Type list of the table property sheet.

The XML type is to be used with the SglListSchema item.

UnigConstraint Name

Specifies whether the same name for index and constraint name may be used in the same table.
The following settings are available:

® Yes - The table constraint and index names must be different, and this will be tested during
model checking

e No - The table constraint and index names can be identical

Customizing and Extending PowerDesigner

170 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.3 Column Category (DBMS)

The Column category is located in the [Root » Script # Objects 3 category, and can contain the following items
that define how columns are modeled for your DBMS.

Table 56:

Item Description

[Common items] The following common object items may be defined for columns:
e Add
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e ConstName
e (Create, Drop
e FEnable
e Maxlen, MaxConstLen
e ModifiableAttributes
e Options, DefOptions
® Permission
e ReversedQueries, ReversedStatements
e SqlAttrQuery, SqglListQuery, SglOptsQuery, SglPermQuery
For a description of each of these common items, see Common Object Items [page 163].

AddColnCheck Specifies a statement for customizing the script for modifying column constraints within an alter

table statement.
Example (Oracle 10g):
alter table [$QUALIFIERS]%TABLES
add [constraint $%$CONSTNAMES%] check (%.A:CONSTRAINTS)

AlterTableAdd Default Specifies a statement for defining the default value of a column in an alter statement.
Example (SQL Server 2005):

[[constraint $ExtDeftConstName%] default $DEFAULTS]for
$COLUMN%

AltEnableAdd ColnChk Specifies if a column check constraint, built from the check parameters of the column, can or
cannot be added in atableusinganalter table statement. The following settings are availa-
ble:

® Yes-AddColnChck can be used to modify the column check constraintinanalter
table statement.

e No - PowerDesigner copies data to a temporary table before recreating the table with the
new constraints.

See also AddColnChck.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 171

Item Description

AltEnableTS Copy Enables timestamp columns in insert statements.

Bind Specifies a statement for binding a rule to a column.

Example (ASE 15):

[¥R%? [exec]] [execute]sp bindrule [%R%?['[%QUALIFIER%]3%RULES']
[[$QUALIFIERS] $SRULES] : [' [$SQUALIFIERS] SRULES']], '$TABLES.
$COLUMNS '

CheckNull Specifies whether a column can be null.

Column Comment

Specifies a statement for adding a comment to a column.

Example:

comment on column [$QUALIFIER%]S%$TABLES.S%COLUMNS is %.qg:COMMENTS

DefineColn Check Specifies a statement for customizing the script of column constraints (checks) within a
create table statement. This statementis called if the create, add, or alter statements con-
tain %CONSTDEFN%.

Example:
[constraint $CONSTNAMES%] check (%$CONSTRAINTS)

DropColnChck Specifies a statement for dropping a column checkinanalter table statement. This state-
ment is used in the database modification script when the check parameters have been removed
on acolumn.

If DropColnChckis empty, PowerDesigner copies data to a temporary table before recreating
the table with the new constraints.
Example (SQL Anywhere 10):
alter table [$QUALIFIERS]%TABLES
drop constraint $CONSTNAMES%
DropColnComp Specifies a statement for dropping a column computed expression in an alter table statement.

Example (SQL Anywhere 10):

alter table [$QUALIFIERS]STABLES
alter %COLUMNS% drop compute

DropDefault Constraint

Specifies a statement for dropping a constraint linked to a column defined with a default value

Example (SQL Server 2005):

[$ExtDeftConstName%?alter table [$QUALIFIERS]S$TABLES
drop constraint $%$ExtDeftConstName%]

Customizing and Extending PowerDesigner

172 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item

EnableBindRule

Description

Specifies whether business rules may be bound to columns for check parameters. The following
settings are available:

® Yes- The Create and Bind entry of Rule are generated

e No - The check is generated inside the column Add order

Enable ComputedColn

Specifies whether computed columns are permitted.

EnableDefault

Specifies whether predefined default values are permitted. The following settings are available:

® Yes - The default value (if defined) is generated for columns. It can be defined in the check
parameters for each column. The %DEFAULT% variable contains the default value. The De-
fault Value check box for columns must be selected in the Tables & Views tabs of the Data-
base Generation dialog box

® No - The default value can not be generated, and the Default Value check box is unavailable.
Example (AS 1Q 12.6):

EnableDefault is enabled and the default value for the column employee function EMPFUNC is

Technical Engineer. The generated scriptis:

create table EMPLOYEE
(

EMPNUM numeric (5) not null,
EMP EMPNUM numeric(5) 0
DIVNUM numeric (5) not null,
EMPEFNAM char (30) ,
EMPLNAM char (30) not null,

EMPFUNC char (30)

default 'Technical Engineer',
EMPSAL numeric(8,2) ,
primary key (EMPNUM)

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 173

Item

Enableldentity

Description

Specifies whether the Identity keyword is supported. Identity columns are serial counters main-
tained by the database (for example SQL Anywhere and Microsoft SQL Server). The following
settings are available:

® Yes - Enables the Identity check box in the column property sheet.

e No - The Identity check box is not available.

When the Identity check box is selected, the Identity keyword is generated in the script after the
column data type. An identity column is never null, and so the Mandatory check box is automati-
cally selected. PowerDesigner ensures that:

e Only one identity column is defined per table

e A foreign key cannot be an identity column

e The ldentity column has an appropriate data type. If the Identity check box is selected for a
column with an unsupported data type, the data type is changed to numeric. If the data type
of an identity column is changed to an unsupported type, an error is displayed.

Note that, during generation, the %IDENTITY% variable contains the value "identity" but you can
easily change it, if needed, using the following syntax :

[$IDENTITY%?new identity keyword]

EnableNotNull WithDflt

Specifies whether default values are assigned to columns containing Null values. The following
settings are available:

® Yes - The With Default check box is enabled in the column property sheet. When it is se-
lected, a default value is assigned to a column when a Null value is inserted.

e No - The With Default check box is not available.

ModifyColn Chck

Specifies a statement for modifying a column checkinanalter table statement. This state-
ment is used in the database modification script when the check parameters of a column have
been modified in the table.

If AddColnChck is empty, PowerDesigner copies data to a temporary table before recreating

the table with the new constraints.

Example (AS 1Q 12.6):

alter table [$QUALIFIERS%]S$TABLES
modify %COLUMNS% check (%.A:CONSTRAINTS)

The %COLUMNO% variable is the name of the column defined in the table property sheet. The %
CONSTRAINT % variable is the check constraint built from the new check parameters.

AltEnableAddColnChk must be set to YES to allow use of this statement.

ModifyColn Comp

Specifies a statement for modifying a computed expression for a column in an alter table.

Example (ASA 6):

alter table [%QUALIFIER%]%TABLES%
alter %COLUMN% set compute (%$COMPUTES%)

Customizing and Extending PowerDesigner

174 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item

ModifyColnDflt

Description

Specifies a statement for modifying a column default value inan alter table statement. This
statement is used in the database modification script when the default value of a column has
been modified in the table.

IfModifyColnDflt is empty, PowerDesigner copies data to a temporary table before recreat-

ing the table with the new constraints.

Example (ASE 15):

alter table [%QUALIFIER%]%TABLES
replace $COLUMN% default %DEFAULTS

The %COLUMN% variable is the name of the column defined in the table property sheet. The
%DEFAULT% variable is the new default value of the modified column.

ModifyColnNull

Specifies a statement for modifying the null/not null status of acolumninanalter table
statement.

Example (Oracle 10g):

alter table [%SQUALIFIERS%]STABLES
modify %$COLUMNS% $%MANDS%

ModifyColumn Specifies a statement for modifying a column. This is a different statement fromthe alter
table statement, and is used in the database modification script when the column definition
has been modified.

Example (SQL Anywhere 10):
alter table [%QUALIFIERS]STABLES
modify $COLUMNS %DATATYPES $SNOTNULLS

NullRequired Specifies the mandatory status of a column. This item is used with the NULLNOTNULL column
variable, which can take the "null", "not null" or empty values. For more information, see Working
with Null Values [page 177].

Rename Specifies a statement for renaming a column withinan alter table statement.

Example (Oracle 10g):

alter table [%$QUALIFIER%]%TABLES
rename column $OLDCOLN% to $NEWCOLNS

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 175

Item Description
SqlChckQuery Specifies a SQL query to reverse engineer column check parameters. The result must conform
to proper SQL syntax.
Example (SQL Anywhere 10):
{OWNER, TABLE, COLUMN, CONSTNAME, CONSTRAINT}
select u.user name, t.table name,
c.column name, k.constraint name,
case (lcase(left (h.check defn, 5))) when 'check' then
substring (h.check defn, 6) else h.check defn end
from sys.sysconstraint k
join sys.syscheck h on (h.check id k.constraint id)
join sys.systab t on (t.object id = k.table object id)
join sys.sysuserperms u on (u.user_ id t.creator)
join sys.syscolumn c on (c.object id k.ref object id)
where k.constraint type = 'C'
[and u.user name=%.q:0WNERS%]
[and t.table name=%.q:TABLE%]
[and c.column name=%.q:COLUMN%]
order by 1, 2, 3, 4
SqlStatistics Specifies a SQL query to reverse engineer column and table statistics.
Example (ASE 15):
[$ISLONGDTTPS?{ AveragelLength }
select [$ISLONGDTTP%?[$ISSTRDTTP$?avg (char length ($COLUMN
%)) :avg (datalength (¥COLUMN%))] :null] as average length
from [$QUALIFIER%]%TABLES
:{ NullValuesRate, DistinctValues, Averagelength }
select
[$ISMAND%?null: (count (*) - count ($COLUMN%)) * 100 / count (*)]
as null values,
[$ISMAND%?null:count (distinct %COLUMN%)] as distinct values,
[$ISVARDTTPS? [¥ISSTRDTTP%?avg (char length (¥COLUMN
%)) :avg (datalength (¥COLUMNY%))] :null] as average length
from [$QUALIFIER%]S%TABLES]
Unbind Specifies a statement for unbinding a rule to a column.
Example (ASE 15):
[3R%? [exec]] [execute]sp unbindrule '$TABLE%.%COLUMNS'

176 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
DBMS Definition Files

45.3.1 Working with Null Values

The NullRequired item specifies the mandatory status of a column. This item is used with the NULLNOTNULL
column variable, which can take the "null", "not null" or empty values. The following combinations are available

When the Column Is Mandatory

"not null" is always generated whether NullRequired is set to True or False as shown in the following example:

create domain DOMN MAND char (33) not null;
create domain DOMN NULL char (33) null;
create table TABLE 1

(

COLN MAND 1 char(33) not null,
COLN_MAND_Z DOMN MAND not null,
COLN_MAND_3 DOMN NULL not null,

)

When the Column Is not Mandatory

e |f NullRequired is set to True, "null" is generated. The NullRequired item should be used in ASE for example,

where nullability is a database option, and the "null" or "not null" keywords are required.
In the following example, all "null" values are generated:

create domain DOMN MAND char (33) not null;
create domain DOMN MAND char (33) null;
create table TABLE 1

(

COLN NULL 1 char (33) null,

COLN NULL 2 DOMN NULL null,

COLN NULL 3 DOMN MAND null

)

e |f NullRequired is set to False, an empty string is generated. However, if a column attached to a mandatory
domain becomes non-mandatory, "null" will be generated.
In the following example, "null" is generated only for COLUMN_NULL3 because this column uses the
mandatory domain, the other columns generate an empty string:

create domain DOMN MAND char (33) not null;
create domain DOMN NULL char (33) null;
create table TABLE 1

(

COLUMN NULL1 char (33) ,

COLUMN_NULLZ DOMN NULL 0

COLUMN_NULL3 DOMN MAND null

)

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

177

4.5.4 Index Category (DBMS)

The Index category is located in the [Root » Script » Objects 3 category, and can contain the following items
that define how indexes are modeled for your DBMS.

Table 57:

Item

Description

[Common items] The following common object items may be defined for indexes:

e Add

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

e Enable, EnableOwner

e Header, Footer

® Maxlen

e ModifiableAttributes

e Options, DefOptions

e ReversedQueries

® ReversedStatements

e SqglAttrQuery, SqlListQuery, SqlOptsQuery

For a description of each of these common items, see Common Object Items [page 163].

1 Note

For information about using variables in the SqlListQuery to reverse-engineering function-
based indexes, see Live Database Reverse Engineering Function-based Index [page 151]

AddColIndex Specifies a statement for adding a columninthe Create Index statement. This parameter

defines each column in the column list of the Create Index statement.

Example (ASE 15):
$COLUMNS [$ASCS]

%COLUMN is the code of the column defined in the column list of the table. %ASC% is ASC
(ascending order) or DESC (descending order) depending on the Sort radio button state for the
index column.

AlterlgnoreOrder Specifies that changes in the order of the collection should not provoke a modify database order.

Cluster Specifies the value to be assigned to the Cluster keyword. If this parameter is empty, the default
value of the %CLUSTER% variable is CLUSTER.

CreateBefore Key Controls the generation order of keys and indexes. The following settings are available:

® Yes —Indexes are generated before keys.

e No - Indexes are generated after keys.

Customizing and Extending PowerDesigner
178 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description

DeflndexType Specifies the default type of an index.

Example (DB2):

Type2

Definelndex Column Specifies the column of an index.

EnableAscDesc Enables the Sort property in index property sheets, which allows sorting in ascending or de-
scending order. The following settings are available:

e Yes—The Sort property is enabled for indexes, with Ascending selected by default. The vari-
able %ASC% is calculated, and the ASC or DESC keyword is generated when creating or
modifying the database

® No - Index sorting is not supported.
Example (SQL Anywhere 10):

A primary key index is created on the TASK table, with the PRONUM column sorted in ascending
order and the TSKNAME column sorted in descending order:

create index IX TASK on TASK (PRONUM asc, TSKNAME desc) ;

EnableCluster Enables the creation of cluster indexes. The following settings are available:

e Yes-The Cluster check box is enabled in index property sheets.

e No - Cluster indexes are not supported.

EnableFunction Enables the creation of function-based indexes. The following settings are available:

® Yes - You can define expressions for indexes.

e No - Function-based indexes are not supported.

IndexComment Specifies a Statement for adding a comment to an index.

Example (SQL Anywhere 10):

comment on index [%QUALIFIER%]S$TABLES.%INDEXS is
%.q:COMMENT%

IndexType Specifies a list of available index types.

Example (1Q 12.6):

CMP
HG
HNG
LF
WD
DATE
TIME
DTTM

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 179

Item

MandIndexType

Description

Specifies whether the index type is mandatory for indexes. The following settings are available:

® Yes - Theindex type is mandatory.

e No - The index type is not mandatory.

MaxCollndex

Specifies the maximum number of columns that may be included in an index. This value is used
during model checking.

SqglSysindex Query

Specifies a SQL query used to list system indexes created by the database. These indexes are
excluded during reverse engineering.

Example (AS 1Q 12.6):

{OWNER, TABLE, INDEX, INDEXTYPE}

select u.user name, t.table name, i.index name, 1i.index type
from sysindex i, systable t, sysuserperms u

where t.table id = i.table id

and u.user id = t.creator

and 1i.index owner != 'USER'

[and u.user name=%.q:0WNER%]

[and t.table name=%.q:TABLES%]

union

select u.user name, t.table name, i.index name, i.index type
from sysindex i, systable t, sysuserperms u

where t.table id = i.table id

and u.user id = t.creator

and 1i.index type = 'SA'

[and u.user name=%.q:0WNER%]

[and t.table name=%.q:TABLES%]

UnigName

Specifies whether index names must be unique within the global scope of the database. The fol-
lowing settings are available:

® Yes —Index names must be unique within the global scope of the database.

e No - Index names must be unique per object

Customizing and Extending PowerDesigner

180 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.5 Pkey Category (DBMS)

The Pkey category is located in the |- Root ¥ Script Objects 3 category, and can contain the following items that
define how primary keys are modeled for your DBMS.

Table 58:
Item Description
[Common items] The following common object items may be defined for primary keys:
e Add
e ConstName
e (Create, Drop
e Fnable
e QOptions, DefOptions
e ReversedQueries
For a description of each of these common items, see Common Object Items [page 163].
EnableCluster Specifies whether clustered constraints are permitted on primary keys.
e Yes - Clustered constraints are permitted.
e No - Clustered constraints are not permitted.
PkAutolndex Determines whether a Create Index statementis generated for every Primary key state-
ment. The following settings are available:
® Yes - Automatically generates a primary key index with the primary key statement. If you se-
lect the primary key check box under create index when generating or modifying a database,
the primary key check box of the create table will automatically be cleared, and vice versa.
e No - Primary key indexes are not automatically generated. Primary key and create index
check boxes can be selected at the same time.
PKeyComment Specifies a statement for adding a primary key comment.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 181

Item Description

UseSpPrimKey Specifies the use of the Sp_primarykey statement to generate primary keys. For a database
that supports the procedure to implement key definition, you can test the value of the corre-
sponding variable %USE_SP_PKEY% and choose between the creation key in the table or
launching a procedure. The following settings are available:

® Yes-The Sp primarykey statementis used to generate primary keys.

® No - Primary keys are generated separatelyinanalter table statement.
Example (ASE 15):

If UseSpPrimKey is enabled the Add entry for Pkey contains:

UseSpPrimKey = YES
Add entry of
[$USE_SP PKEYS%?[execute] sp primarykey %TABLES%, $PKEYCOLUMNSS
ralter table [%QUALIFIER%]%TABLES%
add [constraint $CONSTNAMES] primary key [%$IsClustered%]
($PKEYCOLUMNS%)
[$OPTIONS%]]

4.5.6 Key Category (DBMS)

The Key category is located in the [Root # Script » Objects 3 category, and can contain the following items that
define how keys are modeled for your DBMS.

Table 59:
Item Description
[Common items] The following common object items may be defined for keys:
e Add
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e ConstName
e Create, Drop
e [Enable
e MaxConstLen
e ModifiableAttributes
e QOptions, DefOptions
e ReversedQueries, ReversedStatements
e SqlAttrQuery, SqglListQuery, SglOptsQuery
For a description of each of these common items, see Common Object Items [page 163].
AKeyComment Specifies a statement for adding an alternate key comment.

Customizing and Extending PowerDesigner
182 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description

AllowNullable Coln Specifies whether non-mandatory columns are permitted. The following settings are available:

® Yes-Non mandatory columns are permitted.

® No - Non mandatory column are not permitted.

AlterlgnoreOrder Specifies that changes in the order of the collection should not provoke a modify database order.

EnableCluster Specifies whether clustered constraints are permitted on alternate keys.

® Yes - Clustered constraints are permitted.

® No - Clustered constraints are not permitted.

SqlAkeyIndex Specifies a reverse-engineering query for obtaining the alternate key indexes of a table by live
connection.

Example (SQL Anywhere 10):

select distinct i.index name
from sys.sysuserperms u
join sys.systable t on
(t.creator=u.user id)
join sys.sysindex i on
(i.table_id=t.table id)
where i."unique" not in ('Y', 'N')
[and t.table name = %.q:TABLE%]
[and u.user name = %.q:SCHEMA%]

UnigConstAuto Index Determines whether a Create Index statementis generated for every key statement. The

following settings are available:

® Yes - Automatically generates an alternate key index within the alternate key statement. If
you select the alternate key check box under create index when generating or modifying a
database, the alternate key check box of the create table will automatically be cleared, and
vice versa.

® No - Alternate key indexes are not automatically generated. Alternate key and create index
check boxes can be selected at the same time.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 183

4.5.7 Reference Category (DBMS)

The Reference category is located in the |» Root # Script » Objects 3 category, and can contain the following
items that define how references are modeled for your DBMS.

Table 60:
Item Description
[Common items] The following common object items may be defined for references:
e Add
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e ConstName
e (Create, Drop
e Fnable
e MaxConstLen
e ModifiableAttributes
e ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery
For a description of each of these common items, see Common Object Items [page 163].
CheckOn Commit Specifies that referential integrity testing is performed only after the COMMIT. Contains the key-
word used to specify a reference with the CheckOnCommit option.
Example:
CHECK ON COMMIT
DclDellntegrity Specifies a list of declarative referential integrity constraints allowed for delete. The list can con-
tain any or all of the following values, which control the availability of the relevant radio buttons
on the Integrity tab of reference property sheets:
e RESTRICT
e CASCADE
e SETNULL
e SETDEFAULT
DclUpdIntegrity Specifies a list of declarative referential integrity constraints allowed for update. The list can con-
tain any or all of the following values, which control the availability of the relevant radio buttons
on the Integrity tab of reference property sheets:
e RESTRICT
e CASCADE
e SETNULL
e SETDEFAULT

Customizing and Extending PowerDesigner
184 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description

DefineJoin Specifies a statement to define a join for a reference. This is another way of defining the contents
ofthe create reference statement, and corresponds to the %JOINS% variable.

Usually the create script for a reference uses the %CKEYCOLUMNS% and %PKEYCOLUMNS

% variables, which contain the lists of child and parent columns separated by commas.

If you use %JOINS%, you can refer to each paired parent and child columns separately. A loop is
executed on Join for each paired parent and child columns, allowing to have a syntax mix of PK
and FK.

Example (Access 2000):

P=%PK% F=%FK%

EnableChange JoinOrder Specifies whether, when a reference is linked to a key as shown in the Joins tab of reference
properties, the auto arrange join order check box and features are available. The following set-
tings are available:

e Yes- Thejoin order can be established automatically, using the Auto arrange join order
check box. Selecting this check box sorts the list according to the key column order. Clear-
ing this check box allows manual sorting of the join order with the move buttons.

e No - The auto arrange join order property is unavailable.

EnableCluster Specifies whether clustered constraints are permitted on foreign keys.

e Yes - Clustered constraints are permitted.

e No - Clustered constraints are not permitted.

EnablefKey Name Specifies the foreign key role allowed during database generation. The following settings are
available:

® Yes - The code of the reference is used as role for the foreign key.

e No - The foreign key role is not allowed.

FKAutolndex Determines whether a Create Index statementis generated for every foreign key statement.

The following settings are available:

® Yes - Automatically generates a foreign key index with the foreign key statement. If you se-
lect the foreign key check box under create index when generating or modifying a database,
the foreign key check box of the create table will automatically be cleared, and vice versa.

e No - Foreign key indexes are not automatically generated. Foreign key and create index
check boxes can be selected at the same time.

FKeyComment Specifies a statement for adding an alternate key comment.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 185

Item

SqlListChildren Query

Description

Specifies a SQL query used to list the joins in a reference.

Example (Oracle 10g):

{CKEYCOLUMN, FKEYCOLUMN}
[$ISODBCUSER%?select

p.column name, f.column name
from sys.user cons columns f,
sys.all cons columns p

where
and
[and
and
and
and
order

where
and
and
[and
and
and
and
order

£

p

.position = p.position
f.table name=%.q:TABLES%
p.owner=%.q: POWNNERS]

p.

f.constraint name=%.q:FKCONSTRAINTS
.constraint name=%.q:PKCONSTRAINTS

table name=%.q:PARENTS

by f.position

:select p.column name, f.column name
from sys.all cons columns f,
sys.all cons columns p

£

.position = p.position
f.owner=%.q:SCHEMAS

f.table name=%.q:TABLE%
p.owner=%.q: POWNERS]

p.
£
P
b

table name=%.q:PARENTS

.constraint name=%.q:FKCONSTRAINTS
.constraint name=%.q:PKCONSTRAINTS
y f.position]

UseSpFornKey

Specifies the use of the Sp_foreignkey statement to generate a foreign key. The following

settings are available:

® Yes-The Sp foreignkey statementis used to create references.

e No - Foreign keys are generated separatelyinanalter table statementusing the Cre-

ate order of reference.

See also UseSpPrimKey (Pkey Category (DBMS) [page 181]).

186 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
DBMS Definition Files

4.5.8 View Category (DBMS)

The View category is located in the |+ Root # Script » Objects 1 category, and can contain the following items that
define how views are modeled for your DBMS.

Table 61:
Item Description
[Common items] The following common object items may be defined for views:
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop
e Enable, EnableSynonym
® Header, Footer
e ModifiableAttributes
e Options
® Permission
e ReversedQueries, ReversedStatements
e SqlAttrQuery, SqlListQuery, SglOptsQuery, SqlPermQuery
For a description of each of these common items, see Common Object Items [page 163].
Enablelndex Specifies a list of view types for which a view index is available.
Example (Oracle 10g):
MATERIALIZED
SqlListSchema Specifies a query used to retrieve registered schemas in the database. This item is used with
views of XML type (a reference to an XML document stored in the database).
When you define an XML view, you need to retrieve the XML documents registered in the data-
base in order to assign one document to the view, this is done using the SglListSchema query.
Example (Oracle 10g):
SELECT schema url FROM dba xml schemas
SglIXMLView Specifies a sub-query used to improve the performance of SglAttrQuery.
TypelList Specifies a list of types (for example, DBMS: relational, object, XML) for views. This list populates
the Type list of the view property sheet.
The XML type is to be used with the SqlListSchema item.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 187

Item Description

ViewCheck Specifies whether the With Check Option check box in the view property sheet is available. If the
check box is selected and the ViewCheck parameter is not empty, the value of ViewCheck is
generated at the end of the view select statement and before the terminator.

Example (SQL Anywhere 10):
If ViewCheck is set to with check option, the generated script is:
create view TEST as
select CUSTOMER.CUSNUM, CUSTOMER.CUSNAME, CUSTOMER.CUSTEL
from CUSTOMER
with check option;

ViewComment Specifies a statement for adding a view comment. If this parameter is empty, the Comment
check box in the Views groupbox in the Tables and Views tabs of the Generate Database dialog
box is unavailable.

Example (Oracle 10g):
[$VIEWSTYLES=view? comment on table [$QUALIFIER%]%VIEWS is
% .q:COMMENTS]

ViewStyle Specifies a view usage. The value defined is displayed in the Usage list of the view property sheet.
Example (Oracle 10g):

materialized view

Customizing and Extending PowerDesigner
188 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.9 Tablespace Category (DBMS)

The Tablespace category is located in the |# Root ¥ Script » Objects J category, and can contain the following
items that define how tablespaces are modeled for your DBMS.

Table 62:
Item Description
[Common items] The following common object items may be defined for tablespaces:
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop
e FEnable
e ModifiableAttributes
e Options, DefOptions
e ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery, SqlOptsQuery
For a description of each of these common items, see Common Object Items [page 163].
Tablespace Comment Specifies a statement for adding a tablespace comment.

4.5.10 Storage Category (DBMS)

The Storage category is located in the |» Root ¥ Script » Objects J category, and can contain the following items
that define how storages are modeled for your DBMS.

Table 63:
Item Description
[Common items] The following common object items may be defined for storages:
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop
e FEnable
e ModifiableAttributes
e Options, DefOptions
o ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery
For a description of each of these common items, see Common Object Items [page 163].
Storage Comment Specifies a statement for adding a storage comment.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 189

4.5.11 Database Category (DBMS)

The Database category is located in the |[» Root » Script » Objects 3 category, and can contain the following items
that define how databases are modeled for your DBMS.

Table 64:

Item

[Common items]

Description

The following common object items may be defined for databases:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop

e Enable

e ModifiableAttributes

e Options, DefOptions

® Permission

e ReversedQueries, ReversedStatements

e SqglAttrQuery, SqlListQuery, SglOptsQuery, SqlPermQuery

For a description of each of these common items, see Common Object Iltems [page 163].

BeforeCreate Database

Controls the order in which databases, tablespaces, and storages are generated. The following
settings are available:

® Yes - [default] Create Tablespace and Create Storage statements are generated before the
Create Database statement.

e No - Create Tablespace and Create Storage statements are generated after the Create Da-
tabase statement

CloseDatabase

Specifies the command for closing the database. If this parameter is empty, the Database/Close
option on the Options tab of the Generate Database box is unavailable.

EnableMany Databases

Enables support for multiple databases in the same model.

OpenDatabase

Specifies the command for opening the database. If this parameter is empty, the Database/
Open option on the Options tab of the Generate Database box is unavailable.

Example (ASE 15):
use $DATABASES

The %DATABASE% variable is the code of the database associated with the generated model.

Customizing and Extending PowerDesigner

190 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.12 Domain Category (DBMS)

The Domain category is located in the [+ Root » Script » Objects J category, and can contain the following items
that define how domains are modeled for your DBMS

Table 65:

Item Description

[Common items] The following common object items may be defined for domains:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop

e FEnable, EnableOwner

e Maxlen

e ModifiableAttributes

e ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

Bind Specifies the syntax for binding a business rule to a domain.

Example (ASE 15):

UALIFIERS%] SRULES']

[
[1, %DOMAIN%

$R%? [exec]] [execute]sp bindrule [$R%?['[
[$QUALIFIERS]%RULES] : [' [$SQUALIFIERS] $RULES

- oo
— 0

EnableBindRule Specifies whether business rules may be bound to domains for check parameters. The following
settings are available:

e Yes- The Create and Bind entry of Rule are generated

® No - The check inside the domain Add order is generated

EnableCheck Specifies whether check parameters are generated.

This item is tested during column generation. If User-defined Type is selected for columns in the
Generation dialog box, and EnableCheck is set to Yes for domains, then the check parameters
are not generated for columns, since the column is associated with a domain with check parame-
ters. When the checks on the column diverge from those of the domain, the column checks are
generated.

The following settings are available:

® Yes - Check parameters are generated

e No - Variables linked to check parameters are not evaluated during generation and reverse

EnableDefault Specifies whether default values are generated. The following settings are available:

® Yes - Default values defined for domains are generated. The default value can be defined in
the check parameters. The %DEFAULT% variable contains the default value

e No - Default values are not generated

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 191

Item

SqlListDefault Query

Description

Specifies a SQL query to retrieve and list domain default values in the system tables during re-
verse engineering.

UddtComment

Specifies a statement for adding a user-defined data type comment.

Unbind

Specifies the syntax for unbinding a business rule from a domain.

Example (ASE 15):

[¥R%? [exec]] [execute]sp unbindrule %DOMAIN%

4.5.13 Abstract Data Type Category (DBMS)

The Abstract Data Type category is located in the [Root » Script » Objects J category, and can contain the
following items that define how abstract data types are modeled for your DBMS.

Table 66:

Item

[Common items]

Description

The following common object items may be defined for abstract data types:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

e FEnable

e ModifiableAttributes

® Permission

e ReversedQueries, ReversedStatements

e SqlAttrQuery, SqglListQuery, SglPermQuery

For a description of each of these common items, see Common Object Items [page 163].

ADTComment

Specifies a statement for adding an abstract data type comment.

AllowedADT

Specifies a list of abstract data types which can be used as data types for abstract data types.

Example (Oracle 10g):

OBJECT
TABLE
VARRAY

Authorizations

Specifies a list of those users able to invoke abstract data types.

192 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
DBMS Definition Files

Item Description
CreateBody Specifies a statement for creating an abstract data type body.
Example (Oracle 10g):
create [or replace]type body [$QUALIFIER%]S$ADTS [.0:[as][is]]
$ADTBODY%
end;
EnableAdtOn Coln Specifies whether abstract data types are enabled for columns. The following settings are availa-

ble:

® Yes - Abstract data types are added to the list of column types provided they have the valid
type.
e No - Abstract data types are not allowed for columns.

EnableAdtOn Domn

Specifies whether abstract data types are enabled for domains. The following settings are availa-
ble:

® Yes - Abstract data types are added to the list of domain types provided they have the valid
type
e No - Abstract data types are not allowed for domains

Enable Inheritance

Enables inheritance for abstract data types.

Install

Specifies a statement for installing a Java class as an abstract data class (in ASA, abstract data
types are installed and removed rather than created and deleted). This item is equivalent to a
create statement.

Example (SQL Anywhere 10):

install JAVA UPDATE from file %$.q:FILES

JavaData

Specifies a list of available instantiation mechanisms for SQL Java abstract data types.

Remove

Specifies a statement for installing a Java class as an abstract data class.

Example (SQL Anywhere 10):

remove JAVA class $%ADTS

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 193

4.5.14 Abstract Data Type Attribute Category (DBMS)

The Abstract Data Types Attribute category is located in the [» Root # Script » Objects 3 category, and can
contain the following items that define how abstract data type attributes are modeled for your DBMS.

Table 67:

Item

[Common items]

Description

The following common object items may be defined for abstract data type attributes:

e Add

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop, Modify

e ModifiableAttributes

e ReversedQueries, ReversedStatements
e SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

AllowedADT

Specifies a list of abstract data types which can be used as data types for abstract data type at-
tributes.

Example (Oracle 10g):

OBJECT
TABLE
VARRAY

If you select the type OBJECT for an abstract data type, an Attributes tab appears in the abstract
data type property sheet, allowing you to specify the attributes of the object data type.

Customizing and Extending PowerDesigner

194 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.15 User Category (DBMS)

The User category is located in the [Root » Script » Objects 3 category, and can contain the following items that
define how users are modeled for your DBMS.

Table 68:
Item Description
[Common items] The following common object items may be defined for users:
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop
e FEnable
e Maxlen
e ModifiableAttributes
e Options, DefOptions
o ReversedQueries, ReversedStatements
e SqlAttrQuery, SqlListQuery, SglOptsQuery, SqglPermQuery
For a description of each of these common items, see Common Object Items [page 163].
UserComment Specifies a statement for adding a user comment.

4.5.16 Rule Category (DBMS)

The Rule category is located in the [Root » Script » Objects J category, and can contain the following items that
define how rules are modeled for your DBMS.

Table 69:
Item Description
[Common items] The following common object items may be defined for rules:

e AfterCreate, AfterDrop, AfterModify

o BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop

e FEnable

e Maxlen

e ModifiableAttributes

e ReversedQueries, ReversedStatements
e SqlAttrQuery, SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 195

Item

ColnDefault Name

Description

Specifies the name of a default for a column. This item is used with DBMSs that do not support
check parameters on columns. When a column has a specific default value defined in its check

parameters, a name is created for this default value.
The corresponding variable is %DEFAULTNAME%.

Example (ASE 15):
D %.19:COLUMN% %.8:TABLES%

The EMPFUNC column of the EMPLOYEE table has a default value of Technical Engineer.
The D_EMPFUNC_EMPLOYEE column default name is created:

create default D EMPFUNC EMPLOYEE
as 'Technical Engineer'

go
execute sp bindefault D EMPFUNC EMPLOYEE, "EMPLOYEE.EMPFUNC"

go

ColnRuleName

Specifies the name of a rule for a column. This item is used with DBMSs that do not support
check parameters on columns. When a column has a specific rule defined in its check parame-
ters, aname is created for this rule.

The corresponding variable is %RULE%.

Example (ASE 15):
R %.19:COLUMN%_%.8:TABLE%

The TEASPE column of the Team table has a list of values - Industry, Military, Nuclear, Bank,
Marketing - defined in its check parameters:

The R_TEASPE_TEAM rule name is created and associated with the TEASPE column:

create rule R TEASPE TEAM

as QTEASPE in

('Industry', 'Military', 'Nuclear', 'Bank', 'Marketing')
go

execute sp bindrule R TEASPE TEAM, "TEAM.TEASPE"

go

MaxDefaultLen

Specifies the maximum length that the DBMS supports for the name of the column Default name

RuleComment

Specifies a statement for adding a rule comment.

Customizing and Extending PowerDesigner

196 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description
UddtDefault Name Specifies the name of a default for a user-defined data type. This item is used with DBMSs that
do not support check parameters on user-defined data types. When a user-defined data type has
a specific default value defined in its check parameters, a name is created for this default value.
The corresponding variable is %DEFAULTNAME%.
Example (ASE 15):
D_%.28:DOMAIN%
The FunctionList domain has a default value defined in its check parameters: Technical
Engineer. The following SQL script will generate a default name for that default value:
create default D FunctionList
as 'Technical Engineer'
go
UddtRuleName Specifies the name of a rule for a user-defined data type. This item is used with DBMSs that do

not support check parameters on user-defined data types. When a user-defined data type has a
specific rule defined in its check parameters, a name is created for this rule.

The corresponding variable is %RULE%.

Example (ASE 15):

R $.28:DOMAIN%

The Domain speciality domain has to belong to a set of values. This domain check has
been defined in a validation rule. The SQL script will generate the rule name following the tem-
plate defined in the item UddtRuleName:

create rule R Domain speciality

as (@Domain speciality in

('Industry', 'Military', 'Nuclear', 'Bank', 'Marketing'))

go

execute sp bindrule R Domain speciality, T Domain speciality
go

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 197

4.5.17 Procedure Category (DBMS)

The Procedure category is located in the |+ Root # Script » Objects 1 category, and can contain the following
items that define how procedures are modeled for your DBMS.

Table 70:

Item

[Common items]

Description

The following common object items may be defined for procedures:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop

e Enable, EnableOwner, EnableSynonym

e Maxlen

e ModifiableAttributes

® Permission

e ReversedQueries, ReversedStatements

e SqglAttrQuery, SqlListQuery, SglPermQuery

For a description of each of these common items, see Common Object Iltems [page 163].

CreateFunc Specifies the statement for creating a function.
Example (SQL Anywhere 10):
create function [$QUALIFIERS]%FUNCS[$PROCPRMSS? ([$PROCPRMSS])]
$TRGDEFN%
CustomFunc Specifies the statement for creating a user-defined function, a form of procedure that returns a
value to the calling environment for use in queries and other SQL statements.
Example (SQL Anywhere 10):
create function [$QUALIFIERS]S%FUNCS (<arg> <type>) RETURNS
<type>
begin
end
CustomProc Specifies the statement for creating a stored procedure.

Example (SQL Anywhere 10):

create procedure [$QUALIFIER%]%PROCS (IN <arg> <type>)
begin
end

Customizing and Extending PowerDesigner

198 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description
DropFunc Specifies the statement for dropping a function.
Example (SQL Anywhere 10):
if exists(select 1 from sys.sysprocedure where proc name =
%.q:FUNC%[and user name (creator) = %.q:0WNER%]) then
drop function [$QUALIFIERS]SFUNCS

end 1if

EnableFunc Specifies whether functions are allowed. Functions are forms of procedure that return a value to

the calling environment for use in queries and other SQL statements.

Function Comment

Specifies a statement for adding a function comment.

ImplementationType

Specifies a list of available procedure template types.

MaxFunclLen

Specifies the maximum length of the name of a function.

Procedure Comment

Specifies a statement for adding a procedure comment.

4.5.18 Trigger Category (DBMS)

The Trigger category is located in the [Root » Script » Objects 3 category, and can contain the following items
that define how triggers are modeled for your DBMS.

Table 71:

Item

[Common items]

Description

The following common object items may be defined for triggers:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

e Enable, EnableOwner

e Maxlen

e ModifiableAttributes

e ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

DefaultTrigger Name

Specifies a template to define default trigger names.

Example (SQL Anywhere 10):

$TEMPLATE% %.L:TABLE%

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 199

Item

EnableMulti Trigger

Description

Enables the use of multiple triggers per type.

Event

Specifies a list of trigger event attributes to populate the Event list on the Definition tab of Trigger
property sheets.

Example:

Delete
Insert
Update

EventDelimiter

Specifies a character to separate multiple trigger events.

ImplementationType

Specifies a list of available trigger template types.

Time

Specifies a list of trigger time attributes to populate the Time list on the Definition tab of Trigger
property sheets.

Example:

Before
After

Trigger Comment

Specifies a statement for adding a trigger comment.

UnigName

Specifies whether trigger names must be unique within the global scope of the database. The fol-
lowing settings are available:

® Yes - Trigger names must be unique within the global scope of the database.

e No - Trigger names must be unique per object

Customizing and Extending PowerDesigner

200 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item Description

UseErrorMsg Table Specifies a macro for accessing trigger error messages from a message table in your database.
Enables the use of the User-defined radio button on the Error Messages tab of the Trigger Re-
build dialog box (see Data Modeling > Building Data Models > Physical Diagrams > Triggers >
Generating Triggers and Procedures > Creating User-Defined Error Messages).

If an error number in the trigger script corresponds to an error number in the message table, the
default error message of the .ERROR macro is replaced your message.
Example (ASE 15):
begin
select @errno = S$SERRNOY%,
@errmsg = $MSGTXTS
from $MSGTAB%
where $MSGNO% = $SERRNO%
goto error
end
Where:
o 9%ERRNO%% - error number parameter to the .ERROR macro
o 9%ERRMSG% - error message text parameter to the .ERROR macro
o 9%MSGTAB% - name of the message table
® %MSGNO% - name of the column that stores the error message number
e 9%MSGTXT% - name of the column that stores the error message text
See also UseErrorMsgText.

UseErrorMsg Text Specifies a macro for accessing trigger error messages from the trigger template definition.
Enables the use of the Standard radio button on the Error Messages tab of the Trigger Rebuild
dialog box.

The error number and message defined in the template definition are used.
Example (ASE 15):
begin
select @errno = S$SERRNOY%,
@errmsg = $MSGTXTS
goto error
end
See also UseErrorMsgTable.
ViewTime Specifies a list of available times available for trigger on view.

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 201

4.5.19 DBMS Trigger Category (DBMS)

The DBMS Trigger category is located in the |+ Root ¥ Script » Objects J category, and can contain the following
items that define how DBMS triggers are modeled for your DBMS.

Table 72:

Item

[Common items]

Description

The following common object items may be defined for DBMS triggers:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop

e Alter, AlterStatementList, AlterDBIgnored
e [Enable, EnableOwner

e Header, Footer

e Maxlen

e ModifiableAttributes

e ReversedQueries, ReversedStatements

e SqglAttrQuery, SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

EventDelimiter

Specifies a character to separate multiple trigger events.

Events_scope

Specifies a list of trigger event attributes to populate the Event list on the Definition tab of Trigger
property sheets for the selected scope, for example, schema, database, server.

Scope Specifies a list of available scopes for the DBMS trigger. Each scope must have an associated
Events_scope item.
Time Specifies a list of trigger time attributes to populate the Time list on the Definition tab of Trigger

property sheets.

Example:

Before
After

Trigger Comment

Specifies a statement for adding a trigger comment.

Customizing and Extending PowerDesigner

202 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.20 Join Index Category (DBMS)

The Join Index category is located in the | Root » Script Objects 3 category, and can contain the following
items that define how join indexes are modeled for your DBMS.

Table 73:

Item

[Common items]

Description

The following common object items may be defined for join indexes:

e Add

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

e Enable, EnableOwner

e Header, Footer

e Maxlen

e ModifiableAttributes

e Options, DefOptions

o ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery, SglOptsQuery

For a description of each of these common items, see Common Object Items [page 163].

AddJoin

Specifies the SQL statement used to define joins for join indexes.

Example:

Tablel.colnl = Table2.coln2

EnableJidxColn

Enables support for attaching multiple columns to a join index. In Oracle 9i, this is called a bitmap
join index.

Joinlndex Comment

Specifies a statement for adding a join index comment.

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 203

4.5.21 Qualifier Category (DBMS)

The Qualifier category is located in the [Root » Script » Objects 3 category, and can contain the following items
that define how qualifiers are modeled for your DBMS.

Table 74:
Item Description
[Common items] The following common object items may be defined for qualifiers:
e FEnable
e ReversedQueries
e SqlListQuery
For a description of each of these common items, see Common Object Items [page 163].
Label Specifies a label for <all> in the qualifier selection list.

4.5.22 Sequence Category (DBMS)

The Sequence category is located in the [+ Root » Script » Objects 1 category, and can contain the following
items that define how sequences are modeled for your DBMS.

Table 75:
ltem Description
[Common items] The following common object items may be defined for sequences:
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop
e FEnable, EnableOwner, EnableSynonym
e Maxlen
e ModifiableAttributes
e Options, DefOptions
® Permission
e ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery, SglPermQuery
For a description of each of these common items, see Common Object Items [page 163].
Rename Specifies the command for renaming a sequence.
Example (Oracle 10g):
rename $OLDNAMES to $NEWNAMES

Customizing and Extending PowerDesigner
204 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Description

Sequence Comment Specifies a statement for adding a sequence comment.

4.5.23 Synonym Category (DBMS)

The Synonym category is located in the | Root » Script » Objects 1 category, and can contain the following items
that define how synonyms are modeled for your DBMS.

Table 76:
Item Description
[Common items] The following common object items may be defined for synonyms:
e (Create, Drop
e Enable, EnableSynonym
e Maxlen
e ReversedQueries
e SqlAttrQuery, SqglListQuery
For a description of each of these common items, see Common Object Items [page 163].
EnableAlias Specifies whether synonyms may have a type of alias.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 205

4.5.24 Group Category (DBMS)

The Group category is located in the |+ Root # Script ¥ Objects 1 category, and can contain the following items
that define how groups are modeled for your DBMS.

Table 77:
Item Description
[Common items] The following common object items may be defined for groups:
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop
e Enable
e Maxlen
e ModifiableAttributes
e ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery, SqlPermQuery
For a description of each of these common items, see Common Object Items [page 163].
Bind Specifies acommand for adding a user to a group.
Example (SQL Anywhere 10):
grant membership in group $GROUP% to S$SUSERS
Group Comment Specifies a statement for adding a group comment.
ObjectOwner Allows groups to be object owners.
SqlListChildren Query Specifies a SQL query for listing the members of a group.
Example (ASE 15):
{GROUP ID, MEMBER}
select g.name, u.name
from
[$CATALOG%.]dbo.sysusers u, [%$CATALOG%.]dbo.sysusers g
where
u.suid > 0 and
u.gid = g.gid and
g.gid = g.uid
order by 1, 2
Unbind Specifies a command for removing a user from a group.
Example (SQL Anywhere 10):
revoke membership in group %GROUP% from SUSERS%

Customizing and Extending PowerDesigner
206 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.25 Role Category (DBMS)

The Role category is located in the [Root » Script Objects 3 category, and can contain the following items that
define how roles are modeled for your DBMS

Table 78:

Item

[Common items]

Description

The following common object items may be defined for roles:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop

e Enable

e Maxlen

e ModifiableAttributes

e ReversedQueries, ReversedStatements

e SqglAttrQuery, SqlListQuery, SglPermQuery

For a description of each of these common items, see Common Object Items [page 163].

Bind

Specifies acommand for adding a role to a user or to another role.

Example (ASE 15):

grant role $ROLE$ to $USERS

SqlListChildren Query

Specifies a SQL query for listing the members of a group.

Example (ASE 15):

{ ROLE ID, MEMBER }

SELECT r.name, u.name

FROM
master.dbo.sysloginroles 1,
[$CATALOG%.]dbo.sysroles s,
[$CATALOGS.]dbo.sysusers u,
[$CATALOGS.]dbo.sysusers r

where
1l.suid = u.suid
and s.id =1l.srid

and r.uid = s.lrid

Unbind

Specifies acommand for removing a role from a user or another role.

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

207

4.5.26 DB Package Category (DBMS)

The DB Package category is located in the [Root j» Script » Objects 4 category, and can contain the following
items that define how database packages are modeled for your DBMS.

Table 79:
Item Description
[Common items] The following common object items may be defined for database packages:
e AfterCreate, AfterDrop, AfterModify
e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop
e Enable, EnableSynonym
e Maxlen
e ModifiableAttributes
® Permission
e ReversedQueries, ReversedStatements
e SqlAttrQuery, SglListQuery, SglPermQuery
For a description of each of these common items, see Common Object Items [page 163].
Authorizations Specifies a list of those users able to invoke database packages.
CreateBody Specifies a template for defining the body of the database package. This statement is used in the
extension statement AfterCreate.
Example (Oracle 10g):
create [or replace]package body [$QUALIFIER%]%DBPACKAGES [.O:
[as] [is]] [%IsPragma% ? pragma serially reusable]
$DBPACKAGEBODY %
[begin
$DBPACKAGEINITS
Jend[%DBPACKAGES%];

4.5.27 DB Package Sub-objects Category (DBMS)

The following categories are located in the | Root Script ¥ Objects J category.

e DB Package Procedure
e DB Package Variable

e DB Package Type

e DB Package Cursor

e DB Package Exception
e DB Package Pragma

Each contains many of the following items that define how database packages are modeled for your DBMS.

Customizing and Extending PowerDesigner
208 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Table 80:

Item Description

[Common items] The following common object items may be defined for database packages:

e Add

e ReversedQueries

For a description of each of these common items, see Common Object Items [page 163].

DBProcedure Body [database package procedures only] Specifies a template for defining the body of the package
procedure in the Definition tab of its property sheet.

Example (Oracle 10g):

begin
end

ParameterTypes [database package procedures and cursors only] Specifies the available types for procedures or
Cursors.

Example (Oracle 10g: procedure):

in nocopy

in out

in out nocopy
out

out nocopy

4.5.28 Parameter Category (DBMS)

The Parameter category is located in the [+ Root » Script » Objects 1 category, and can contain the following
items that define how parameters are modeled for your DBMS.

Table 81:
Item Description
[Common items] The following common object items may be defined for database packages:

e Add

e ReversedQueries

For a description of each of these common items, see Common Object Iltems [page 163].

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 209

4.5.29 Privilege Category (DBMS)

The Privilege category is located in the | Root # Script » Objects 3 category, and can contain the following items
that define how privileges are modeled for your DBMS.

Table 82:

Item

[Common items]

Description

The following common object items may be defined for privileges:

For a description of each of these common items, see Common Object Items [page 163].

AfterCreate, AfterDrop, AfterModify
BeforeCreate, BeforeDrop, BeforeModify
Create, Drop

Enable

ModifiableAttributes

ReversedQueries, ReversedStatements

GrantOption

Specifies the grant option for a privileges statement.

Example (Oracle 10g):

with admin option

Revokelnherited

Allows you to revoke inherited privileges from groups and roles.

RevokeOption

Specifies revoke option for a privileges statement.

System

Specifies a list of available system privileges.

Example (ASE 15):

CREATE DATABASE
CREATE DEFAULT
CREATE PROCEDURE
CREATE TRIGGER
CREATE RULE
CREATE TABLE
CREATE VIEW

Customizing and Extending PowerDesigner

210 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.30 Permission Category (DBMS)

The Permission category is located in the |» Root ¥ Script » Objects J category, and can contain the following
items that define how permissions are modeled for your DBMS.

Table 83:

Item Description

[Common items] The following common object items may be defined for permissions:

e Create, Drop
e FEnable
e ReversedQueries

e SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

GrantOption Specifies the grant option for a permissions statement.

Example (ASE 15):

with grant option

Revokelnherited Allows you to revoke inherited permissions from groups and roles.

RevokeOption Specifies the revoke option for a permissions statement.

Example (ASE 15):

cascade

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 211

4.5.31 Default Category (DBMS)

The Default category is located in the |+ Root ¥ Script » Objects 3 category, and can contain the following items
that define how defaults are modeled for your DBMS.

Table 84:

Item

[Common items]

Description

The following common object items may be defined for defaults:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop

e Enable, EnableOwner

e Maxlen

e ModifiableAttributes

e ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

Bind

Specifies the command for binding a default object to a domain or a column.

When a domain or a column use a default object, a binddefault statement is generated after the
domain or table creation statement. In the following example, column Address in table Customer
uses default object CITYDFLT:

create table CUSTOMER (
ADDRESS char (10) null

)
sp_bindefault CITYDFLT, 'CUSTOMER.ADDRESS'

If the domain or column use a default value directly typed in the Default list, then the default
value is declared in the column creation line:

ADDRESS char (10) default 'StdAddr' null

PublicOwner

Enables PUBLIC to own public synonyms.

Unbind

Specifies the command for unbinding a default object from a domain or a column.

Example (ASE 15):

[3R%? [exec]] [execute]sp unbindefault %.g:BOUND OBJECTS

Customizing and Extending PowerDesigner

212 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.32 Web Service and Web Operation Category (DBMS)

The Web Service and Web Operation categories are located in the [» Root Script » Objects J category, and can
contain the following items that define how web services and web operations are modeled for your DBMS.

Table 85:

Item

[Common items]

Description

The following common object items may be defined for web services and web operations:

e AfterCreate, AfterDrop, AfterModify

e Alter

e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop

e [Enable, EnableOwner

e Header, Footer

e MaxConstLen (web operations only)

e Maxlen

e ModifiableAttributes

o ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

Enable Namespace

Specifies whether namespaces are supported.

EnableSecurity

Specifies whether security options are supported.

OperationType List

[web operation only] Specifies a list of web service operation types.

Example (DB2 UDB 8.x CS):

query
update
storeXML
retrieveXML
call

ServiceTypelList

[web service only] Specifies a list of web service types.

Example (SQL Anywhere 10):

RAW
HTML
XML
DISH

UnigName

Specifies whether web service operation names must be unique in the database.

WebService Comment/
WebOperation Comment

Specifies the syntax for adding a comment to web service or web service operation.

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

213

4.5.33 Web Parameter Category (DBMS)

The Web Parameter category is located in the | Root # Script » Objects 4 category, and can contain the
following items that define how web parameters are modeled for your DBMS.

Table 86:
Item Description
[Common items] The following common object items may be defined for web parameters:
e Add
e FEnable
For a description of each of these common items, see Common Object Items [page 163].
EnableDefault Allows default values for web service parameters.
ParameterDttp List Specifies a list of data types that may be used as web service parameters.

4.5.34 Result Column Category (DBMS)

The Result Column category are located in the | Root » Script » Objects 3 category, and can contain the
following items that define how web services and web operations are modeled for your DBMS.

Table 87:

Description

ResultColumn DttpList Specifies a list of data types that may be used for result columns.

Customizing and Extending PowerDesigner
214 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.5.35 Dimension Category (DBMS)

The Dimension category is located in the |» Root » Script » Objects 1 category, and can contain the following
items that define how dimensions are modeled for your DBMS.

Table 88:
Item Description
[Common items] The following common object items may be defined for dimensions:
e AfterCreate, AfterDrop, AfterModify
e Alter
e BeforeCreate, BeforeDrop, BeforeModify
e Create, Drop
e [Enable
e Header, Footer
® Maxlen
e ReversedQueries
e SqglAttrQuery, SqlListQuery
For a description of each of these common items, see Common Object Iltems [page 163].
AddAttr Hierarchy Specifies the syntax for defining a list of hierarchy attributes.
Example (Oracle 10g):
child of $DIMNATTRHIERS
AddAttribute Specifies the syntax for defining an attribute.
Example (Oracle 10g):
attribute $DIMNATTR% determines [.0O:[($DIMNDEPCOLNLISTS)]
[$DIMNDEPCOLN%]]
AddHierarchy Specifies the syntax for defining a dimension hierarchy.
Example (Oracle 10g):
hierarchy $DIMNHIERS (
$SDIMNATTRHIERFIRST® $DIMNATTRHIERLISTS)
AddJoin Hierarchy Specifies the syntax for defining a list of joins for hierarchy attributes.
Example (Oracle 10g):
join key [.O:[(%DIMNKEYLIST%)][%DIMNKEYLIST%]] references %DIMNPARENTLEVEL%
AddLevel Specifies the syntax for dimension level (attribute).
Example (Oracle 10g):
level %DIMNATTR% is [.O:[(%DIMNCOLNLIST%)][%DIMNTABL%.%DIMNCOLN%]]

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 215

4.5.36 Extended Object Category (DBMS)

The Extended Object category is located in the | Root » Script » Objects J category, and can contain the
following items that define how extended objects are modeled for your DBMS.

Table 89:

Item Description

[Common items] The following common object items may be defined for extended objects:

e AfterCreate, AfterDrop, AfterModify

e BeforeCreate, BeforeDrop, BeforeModify
e (Create, Drop

e FnableSynonym

® Header, Footer

e ModifiableAttributes

e ReversedQueries, ReversedStatements
e SqglAttrQuery, SqlListQuery

For a description of each of these common items, see Common Object Items [page 163].

AlterStatement List Specifies a list of text items representing statements modifying the corresponding attributes

Comment Specifies the syntax for adding a comment to an extended object.

4.6 Script/Data Type Category (DBMS)

The Data Type category provides mappings to allow PowerDesigner to handle DBMS-specific data types
correctly.

The following variables are used in many of the entries:

® 2n - Length of the data type
® s - Size of the data type
® 3p - Precision of the data type

Table 90:

Description

AmcdAmcdType Lists mappings to convert from specialized data types (such as XML, IVL, MEDIA, etc) to standard
PowerDesigner data types. These mappings are used to help conversion from one DBMS to another,
when the new DBMS does not support one or more of these specialized types. For example, if the XML
data type is not supported, TXT is used.

Customizing and Extending PowerDesigner
216 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Item

AmcdDataType

Description

Lists mappings to convert from PowerDesigner (Internal) data types to DBMS (Physical Model) data
types.

These mappings are used during CDM to PDM generation and with the Change Current DBMS com-
mand.

Examples (ASE 15):

e The PowerDesigner A%n datatype is converted to a char (%n) for ASE 15.

® The PowerDesigner VA%n datatype is converted to a varchar (%n) for ASE 15.

PhysDataType

Lists mappings to convert from DBMS (Physical Model) data types to PowerDesigner (Internal) data
types.

These mappings are used during PDM to CDM generation and with the Change Current DBMS com-
mand.

Examples (ASE 15):

® The ASE 15 sysname datatype is converted to a VA30 for PowerDesigner.

e The ASE 15 integer datatype is converted to a I for PowerDesigner.

PhysDttpSize

Lists the storage sizes of DBMS data types. These values are used when estimating the size of a data-
base.

Examples (ASE 15):

e The ASE 15 smallmoney requires 8 bytes of space.
e The ASE15 smalldatetime requires 4 bytes of space.

OdbcPhysData Type

Lists mappings to convert from live database (ODBC) data types to DBMS (Physical Model) data
types during database reverse engineering.

These mappings are used when data types are stored differently in the database (often due to the in-
clusion of a default size) than in the DBMS notation.

Examples (ASE 15):

e Afloat (8) inanASE 15 databaseisreversedasa float.

e Adecimal (30, 6) inan ASE 15 database is reversed as a decimal.

PhysOdbcData Type

Lists mappings of DBMS (Physical Model) data types to database (ODBC) data types for use when
updating and reverse engineering a database.

These mappings are used when data types that are functionally equivalent but different to those
specified in the PDM are found in an existing database to avoid the display of unnecessary and irrele-
vant differences in the Merge dialog.

Examples (ASE 15):

e Aunicharistreated asequivalenttoaunichar (1) inan ASE 15 database.

e Afloat (1) istreatedasequivalenttoa float (4) inan ASE 15 database.

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 217

Item Description

PhysLogADT Type Lists mappings to convert from DBMS (Physical Model) abstract data types to PowerDesigner
(Internal) abstract data types.

These mappings are used to populate the Type field and display the appropriate properties in abstract
data type property sheets and with the Change Current DBMS command.

Examples (Oracle 11g):

® The Oracle 11g VARRAY abstract data type is converted to an Array for PowerDesigner.

® The Oracle 11g SQLJ_OBJECT datatype is converted to a JavaObject for PowerDesigner.

LogPhysADT Type Lists mappings to convert from PowerDesigner (Internal) abstract data types to DBMS (Physical
Model) abstract data types.

These mappings are used with the Change Current DBMS command.
Examples (Oracle 11g):

e The PowerDesigner List abstract data type is converted to a TABLE for Oracle 11g.
e The PowerDesigner Object abstract data type is converted to an OBJECT for Oracle 11g.

AllowedADT Lists the abstract data types that may be used as types for columns and domains in the DBMS.
Example (ASE 15):
e JAVA

HostDataType Lists mappings to convert from DBMS data types (Physical Model) to data types permitted as proce-

dure parameters (Trigger).

These mappings are used to populate the Data type field in ADT procedure parameter property
sheets

Examples (Oracle 11g):

e The Oracle 11g DEC data type is converted to a number.

e The Oracle 11g SMALLINT datatype is convertedto an integer.

4.7 Profile Category (DBMS)

The Profile category is used to extend standard PowerDesigner objects. You can refine the definition, behavior,
and display of existing objects by creating extended attributes, stereotypes, criteria, forms, symbols, generated
files, etc, and add new objects by creating and stereotyping extended objects and sub-objects.

You can add extensions in either:

e your DBMS definition file - you should save a backup of this file before editing it.
® aseparate extension file - which you attach to your model.

For detailed information about working with profiles, including adding extended attributes and objects, see
Extension Files [page 18].

Customizing and Extending PowerDesigner
218 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.7.1 Using Extended Attributes During Generation

Extended attributes can be taken into account during generation. Each extended attribute value can be used as a
variable that can be referenced in the scripts defined in the Script category.

Some DBMSs include predefined extended attributes. For example in PostgreSQL, domains include default
extended attributes used for the creation of user-defined data types.

E* Domain Properties - Address [ADDRESS]

Preview I Dependencies I Extended Dependencies I Yerzioh Info
General I Standard Checks I Additional Checks EBaze Type | MHaotes I Rules

Lenath: ||
Array Element type: I
Aygray delimiter: I
[T Byalue
Input furnction:

Dutput function:

Send function:

Receive function:

¢ Less | -] 4 I Cancel Aol Help

You can create as many extended attributes as you need, for each DBMS supported object.

1 Note

PowerDesigner variable names are case sensitive. The variable name must be an exact match of the extended
attribute name.

Example

For example, in DB2 UDB 7 0S/390, the extended attribute hereNotNul1l allows you to add a clause enforcing
the uniqueness of index names if they are not null.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 219

Inthe Create index order, WhereNotNull is evaluated as follows:

create [$INDEXTYPES] [$UNIQUE% [$WhereNotNull%?where not null]]index [%QUALIFIER%]
SINDEXS on [$TABLQUALIFIER%]S$TABLES (
SCIDXLISTS

)
[$OPTIONS%]

If the index name is unique, and if you set the type of the WhereNotNul1l extended attribute to True, the "where
not null" clause is inserted in the script.

Inthe sglListQuery item:

{OWNER, TABLE, INDEX, INDEXTYPE, UNIQUE, INDEXKEY, CLUSTER, WhereNotNull}
select

tbcreator,

tbname,

name,

case indextype when '2' then 'type 2' else 'type 1' end,

case uniquerule when 'D' then '' else 'unique' end,

case uniquerule when 'P' then 'primary' when 'U' then 'unique' else '' end,
case clustering when 'Y' then 'cluster' else '' end,

case uniquerule when 'N' then 'TRUE' else 'FALSE' end

from

sysibm.sysindexes
where 1=1

[and tbname=%.q:TABLES%]

[and tbcreator=%.q:0WNERS%]
[and dbname=%.q:CATALOGS]
order by

1,2 ,3

4.7.2 Modifying the Estimate Database Size Mechanism

By default, the Estimate Database Size mechanism uses standard algorithms to calculate the sizes of
tablespaces, tables, columns, and indexes and adds them together to provide an indication of the size that the
database will require. You can override the algorithm for one or more of these types of objects or include
additional objects in the calculation by adding the GetEstimatedsize event handler to the appropriate object in
the profile category and entering a script to calculate its size.

Procedure

1. Select| Database » Edit Current DBMS Jto open the DBMS definition file, and expand the profile category.

2. Right-click the metaclass for which you want to provide a script to calculate the object size, select [New
Event Handler 3 to open a selection dialog, select the GetEstimatedSize event handler, and then click OK to
add it under the metaclass.

3. Click the Event Handler Script tab in the right pane and enter appropriate code to calculate the size of your
chosen object.

Customizing and Extending PowerDesigner
220 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Customizing and Extending PowerDesigner
DBMS Definition Files

l: DBMS Propetrties {(For All Models) ;Iglil

General | Trigger Templatesl Trigger Template ltems | Procedure Templatesl

- - |SYASID520:ProfilehT able\E vent Hardiers\GetE stimatedSize Aa-d- T

DataSource ;I
Dependencyh atri
IEIExtendedDbiect_ %‘.J-Haﬁ@d &% ﬁlﬁ’ll) | g) Ln1, Col1
[z] ExtendedSubObject
E'j Index Function %GetEstinatedfize%|(ob]j, ByRef message)

g Joinlndes
7 Key ' First compute global databaszse setting wariable we will need.

%@, Model ! Get IQPagedize

&% Procedure Dim IQPageiize
IQPagelize = 131072 ' default

General Ewvent Handler Senpt |G|oba| Scriptl

g %j:' ?:LT:HCB if (ActiwveModel.Databases.Count > 01 then
T _ Dim DE, 30pts
5 @ Ciiteria Set DE = ActiveModel.Datahases.Ttem(0)
E@ Event Handlers 30pts = DE.GetPhysicallption¥alue ("iq page size™)
¢ b o GetEstimatedSize — if (30pts <> ") then
o e Welidate IQPagesize = Clng(S0pta)
I25) Extended Attributes end if

: IC5) Extended Collections end if -
-3 Forms P I I _’I—I

{I 1= kAo e I_bl;I
] I Cancel Apply | Help |

In the following example, we look at extracts of a GetEstimatedSize event handler defined on the Table
metaclass to estimate the size of the database by calculating the size of each table as the total size of all its
columns plus the total size of all its indexes.

1 Note

For examples of the GetEstimatedSize event handler in use on the Table and other metaclasses, see the
SAP 1Q v16 and HP Neoview R2.4 DBMS definition files.

In this first extract from the script, the GetEstimatedsSize function opens and the size of each table is
obtained by looping through the size of each of its columns. The actual work of calculating the column size is
done by the line:

ColSize = C.GetEstimatedSize (message, false)

, which calls the GetEstimatedSize event handler on the Column metaclass (see Calling the
GetEstimatedSize Event Handler on Another Metaclass [page 222]):

Function %GetEstimatedSize% (obj, ByRef message)
' First compute global database setting variable we will need.

' Get table size and keep column size for future use
Dim ColSizes, TblSize, ColSize, C
Set ColSizes = CreateObject ("Scripting.Dictionary")
TblSize = 0 ' May be changed to take into account table definition initial
size.
for each C in obj.Columns
' Start browsing table columns and use event handler defined on column
metaclass (if it exists).
ColSize = C.GetEstimatedSize (message, false)
' Store column size in the map for future use in indexes.
ColSizes.Add C, ColSize
' Increase the table global size.

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

TblSize = TblSize + ColSize
next
Dim RawDataSize
RawDataSize = BlockSize * int (obj.Number * TblSize / BlockSize)
' At this point, the RawDataSize is the size of table in database.

Next the size of the table indexes is calculated directly in the script without making a call to an event handler
on the Index metaclass, the line outputting index sizes is formatted and the size of the indexes added to the
total database size:

' Now calculate index sizes. Set up variables to store indexes sizes.
Dim X, XMsg, XDataSize
XMSg = nmn
for each X in obj.Indexes
XDataSize = 0
' Browsing index columns and get their size added in XDataSize
For each C in X.IndexColumns
XDataSize = XDataSize + ColSizes.Item(C.Column)
next
XDataSize = BlockSize * int (obj.Number * XDataSize / BlockSize)
' Format the display message in order to get size information in output
and result list.
XMsg = XMsg & CStr (XDataSize) & "|" & X.ObjectID & vbCrLf
' Add the index size to table size.
RawDataSize = RawDataSize + XDataSize
next

Finally the size information is formatted for output (see Formatting the Database Size Estimation Output
[page 223]). Each table is printed on a separate line in both the Output and Result List windows, and its total
size including all columns and indexes is given:

' set the global message to table size and all indexes (separate with
carriage return).
message = CStr (RawDataSize) & "||" & obj.ShortDescription & vbCrLf & XMsg
$GetEstimatedSize% = RawDataSize
End Function

Once all the tables have been processed, PowerDesigner calculates and prints the total estimated size of the
database.

4721 Calling the GetEstimatedSize Event Handler on
Another Metaclass

You can call a GetEstimatedSize event handler defined on another metaclass to use this size in your
calculation. For example, you may define GetEstimatedSize on the Table metaclass, and make a call to
GetEstimatedsize defined onthe Column and Index metaclasses to use these sizes to calculate the total size
of the table.

The syntax of the function is as follows, where <message> is the name of your variable containing the results to
print:

GetEstimatedSize (<message>[, true|false])

Customizing and Extending PowerDesigner
222 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

In general, we recommend that you use the function in the folllowing form:
GetEstimatedSize (<message>, false)

The use of the false parameter (which is the default, but which is shown here for clarity) means that we call the
GetEstimatedSize event handler on the other metaclass, and use the default mechanism only if the event
handler is not available.

Setting the parameter to true will force the use of the default mechanism for calculating the size of objects (only
possible for tables, columns, and join indexes):

GetEstimatedSize (<message>, true)

4.7.2.2 Formatting the Database Size Estimation Output

You can format the output for your database size estimation. Sub-objects (such as columns and indexes)
contained in a table are offset, and you can print additional information after the total.

The syntax for the output is as follows:

[<object-size>] [:<compartment>] | [ObjectID] [|<label>]

where:

® <object-size> -isthe size of the object.

® <compartment> -isaone-digit number, which indicates that the size of the object should be excluded from
the total size of the database and should be printed after the database size has been calculated. For example,
you may include the size of individual tables in your calculation of the database size and print the sizes of
tablespaces separately after the calculation.

® ObjectID-isunneccessary for objects, such as tables, but required for sub-objects if you want to print them
to the Result List.

® <label>-isany appropriate identifying string, and is generally set to ShortbDescription, which prints the
type and name of the selected object.

For example, in the event handler defined on the Table metaclass (having calculated and stored the size of a
table, the size of all the columns of type LONG contained in the table, and the size of each index in the table), we
create a message variable to print this information. We begin by printing a line giving the size of a table:

message = CStr (TableSize) & "||" & objTable.ShortDescription & vbCrLf
We then add a line printing the total size of all the columns of type LONG in the table:
message = message & CStr(LongSize) & "||Columns of type LONG" & vbCrLf

We then add a line printing the size of each index in the table:

message = message & CStr(IndexSize) & "|" & objIndex.ObjectID & vbCrLf

In the event handler defined on the Tablespace metaclass (having calculated and stored the size of a
tablespace), we create a message variable to print this information after the database size calculation has been
printed.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 223

We begin by overriding the default introduction to this second compartment:

message = ":1||Tables are allocated to the following tablespaces:"

We then add a line printing the size of each tablespace in the table

message = message + CStr (tablespaceSize) & ":1||" & objTablespace.ShortDescription

The result gives the following output:

Estimate of the size of the Database "Sales"...
Number Estimated size Object
10,000 6096 KB Table 'Invoices'
Columns of type LONG (35 KB)
Index 'customerFKeyIndex' (976 KB)
Index 'descriptionIndex' (1976 KB)

[...etc...]
Tables are allocated to the following tablespaces:
Estimated size Object
6096 KB Tablespace 'mainStorage'

[...etc...]

4.8 ODBC Category (DBMS)

The ODBC category contains items for live database generation when the DBMS does not support the generation
statements defined in the Script category.

For example, data exchange between PowerDesigner and MSACCESS works with VB scripts and not SQL, this is
the reason why these statements are located in the ODBC category. You have to use a special program
(access.mdb) to convert these scripts into MSACCESS database objects.

4.9 Physical Options (DBMS)

For some DBMSs, additional options are used to specify how an object is optimized or stored in a database. In
PowerDesigner, these options are called physical options and are displayed on the Physical Options and Physical
Options (Common) tabs of object property sheets.

To appear on the Physical Options tab, an option must be defined in the Seript\Objects\<object>\Options
item (see Common Object Items [page 163]). Default values can be stored in Options or in DefOptions. To
appear on the Physical Options (Common) tab (or any other property sheet tab), the physical option must,
additionally be associated with an extended attribute (see Adding DBMS Physical Options to Your Forms [page
2281).

Customizing and Extending PowerDesigner
224 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

During generation, the options selected in the model for each object are stored as a SQL string in the %OPTIONS
% variable, which must appear at the end of the Create statement of the object, and cannot be followed by
anything else. The following example uses the correct syntax:

create table
[$OPTIONS%]

During reverse engineering by script, the section of the SQL query determined as being the physical options is
stored in %OPTIONS%, and will then be parsed when required by an object property sheet.

During live database reverse engineering, the SgloptsQuery SQL statement is executed to retrieve the physical
options which is stored in %OPTIONS% to be parsed when required by an object property sheet.

You can use PowerDesigner variables (see PDM Variables and Macros [page 230]) to set physical options for an
object. For example, in Oracle, you can set the following variable for a cluster to make the cluster take the same
name as the table.

Cluster S$TABLES

For information about setting physical options, see Data Modeling > Building Data Models > Physical
Implementation > Physical Options.

4.9.1 Simple Physical Options

Simple physical options must contain a name, and may contain a %d, %s, or other variable to let the user specify
avalue, and keywords to specify permitted values and defaults.

Simple physical options are specified on a single line using the following syntax:
<name> [=] %s|%d|%<variable>% [: <keywords>]

Everything entered before the colon is generated in scripts. The <name> is required by PowerDesigner, but you
can place it between carets (<<name>>) if you need to exclude it from the final script. The $d or s variables
require a numeric or string value, and you can also use a PowerDesigner variable or GTL snippet.

Table 91:

max rows per page=%d max_rows_per_ page=<value>
for instance %s for instance <string>
<Partition-name> %s <name>

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 225

You can insert a colon followed by comma-separated keywords to control your options:

Table 92:

Keyword Value and result

category=<metac | Allows the user to associate the object with an object of the specified kind. The following settings are
lass> available:

e tablespace

e storage

1 Note

In Oracle, the storage composite physical option is used as a template to define all the stor-
age values in a storage entry to avoid having to set values independently each time you need
to re-use them same values in a storage clause. For this reason, the Oracle physical option
does not include the storage name (%s).

® <gualified metaclass collection>-Forexample:Model.Tables or

Table.Columns

on %$s : category=storage

list=<value>| Specifies a list of pipe-separated values permitted for the option.

<value>

default=<value> Specifies a default value for the option.

dquoted=yes and Specifies that the value is enclosed in double or single quotes.

squoted=yes

multiple=yes Specifies that the option is displayed with a <*> suffix in the left pane of the Physical Options tab and
can be added to the right pane as many times as necessary. If the option is selected in the right pane
and you click the same option in the left pane to add it, a message box asks you if you want to reuse
the selected option. If you click No, a second instance of the option is added to the right pane.

enabledbprefix= | Specifies that the database name is inserted as a prefix (see tablespace options in DB2 0S/390).

yes

prevmand=yes and | Specifies that the previous or next physical option is required for the present option and that if the
nextmand=yes present option is added to the right pane, then the previous or next option is also added.

Customizing and Extending PowerDesigner
226 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Examples

Table 93:

Physical Option ’ Generates As
ccsid %$s : list=ascii|ebcdic|unicode, ccsid ascii

default=ascii

table=%s : category=Model.Tables, table="<table>"
dquoted=yes

<flashback_archive> %s <string>

4.9.2 Composite Physical Options

Composite physical options are specified over multiple lines, and contain one or more dependent options. If you
add the composite option to the right pane of the Physical Options tab, all the dependant options are added with it.
If you add a dependant option, the composite option is added as well to contain it.

Composite physical options are defined with the following syntax:

<name> [=] [%s]|%d|%<variable>%] : composite=yes[, <keywords>]
{

<sub-option>

[<sub-option>...]

}

Everything entered before the colon is generated in scripts. The <name> is required by PowerDesigner, but you
can place it between carets (<<name>>) if you need to exclude it from the final script. The %d or %s variables
require a numeric or string value, and you can also use a PowerDesigner variable or GTL snippet.

The composite=yes keyword is required for composite options, and can be used in conjunction with any of the
simple physical option keywords or any of the following:

Table 94:
Keyword Value and result
composite=yes Specifies that the option is a composite option containing dependant options surround by curly
braces.
separator=yes Specifies that the dependant options are separated by commas.

parenthesis=yes Specifies that the ensemble of dependant objects are contained between parentheses.

chldmand=yes Specifies that at least one of the dependant options must be set.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 227

Examples
Table 95:
Physical Option Generates As
<list> : composite=yes, multiple=yes <frag-expression>
{ in <storage>
<frag-expression> %s
in %s : category=storage <frag-expression2>
} in <storage2>
etc
<using block> : using vcat <string>
composite=yes,parenthesis=yes using stogroup <storage>
{ prigty <value>
using vcat %s secqgty <value>
using stogroup %s : category=storage, erase no)
composite=yes
{
prigty %d : default=12
secqty %d
erase %s : default=no, list=yes | no
}

4.9.3 Adding DBMS Physical Options to Your Forms

Many DBMSs use physical options as part of the definition of their objects. The most commonly-used physical
options are displayed on a form, Physical Options (Common), defined under the appropriate metaclass. You can
edit this form, or add physical options to your own forms.

Context

1 Note

PowerDesigner displays all of the available options for an object (defined at Script/Objects/<object>/
Options category) on the Physical Options tab (see Physical Options (DBMS) [page 2241]).

For a physical option to be displayed in a form, it must be associated with an extended attribute with the type
Physical option.
Procedure

1. Right-click the metaclass and select New Extended Attribute from Physical Options to open the Select
Physical Options dialog:

Customizing and Extending PowerDesigner
228 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Il Select Physical Options E

By o+ G -

=

k. Cancel | | Help I

1 Note

This dialog will be empty if no physical options are defined at Secript/Objects/<object>/Options.

2. Select the physical option required and click OK to create an extended attribute associated with it.
3. Specify any other appropriate properties.

4. Select the form in which you want to insert the physical option and click the Add Attribute tool to insert it as a
control (see Adding Extended Attributes and Other Controls to Your Form [page 69]).

Results

1 Note

To change the physical option associated with an extended attribute, click the ellipsis to the right of the
Physical Options field in the Extended Attribute property sheet.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 229

4.10 PDM Variables and Macros

The SQL queries recorded in the DBMS definition file items make use of various PDM variables, which are written
between percent signs. These variables are replaced with values from your model when the scripts are generated,
and are evaluated to create PowerDesigner objects during reverse engineering.

For example, in the following query, the variable $TABLE% will be replaced by the code of the table being created:

CreateTable = create table $TABLES

1 Note

You can use these variables freely in your own queries, but you cannot change the method of their evaluation
(ie, $TABLES% can only ever evaluate to the code of the table). You can alternately, access any object properties
using GTL (see Customizing Generation with GTL [page 268]) and the public names available through the
PowerDesigner metamodel (see The PowerDesigner Public Metamodel [page 366]).

The evaluation of variables depends on the parameters and context. For example, the $COLUMNS variable cannot
beusedinacCreate Tablespace query, because itis only valid in a column context.

These variables can be used for all objects supporting these concepts:

Table 96:

Variable Comment

%COMMENT% Comment of Object or its name (if no comment defined)

%OWNER% Generated code of User owning Object or its parent. You should not use this variable for
queries on objects listed in live database reverse dialog boxes, because their owner is not
defined yet

%DBPREFIX% Database prefix of objects (name of Database +'." if database defined)

%QUALIFIER% Whole object qualifier (database prefix + owner prefix)

%OPTIONS% SQL text defining physical options for Object

%OPTIONSEX% The parsed SQL text defining physical options of the object

%CONSTNAME% Constraint name of Object

%CONSTRAINT% Constraint SQL body of Object. Ex: (A <= 0) AND (A >=10)

%CONSTDEFN% Column constraint definition. Ex: constraint C1 checks (A>=0) AND (A<=10)

%RULES% Concatenation of Server expression of business rules associated with Object

%NAMEISCODE% True if the object (table, column, index) name and code are identical (AS 400 specific)

%TABLQUALIFIER% Parent table qualifier (database prefix + owner prefix)

Customizing and Extending PowerDesigner
230 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

VELELE Comment

%TABLOWNER% The generated code of the user owning the parent table

4.10.1 Testing Variable Values with the [] Operators

You can use square brackets [] to test for the existence or value of a variable.
You can use square brackets to

® Include optional strings and variables, or lists of strings and variables in the syntax of SQL statements:
[$<variable>%]

e Test the value of a variable and insert or reconsider a value depending of the result of the test: [$<variable>
%? <true> : <false>]

e Testthe content of avariable [$<variable>%=<constant>? <true> : <false>]
Table 97:

VELELE Generation

[s<variable>%] Tests for the existence of the variable.

Generation: Generated only if <variable> exists and is not assigned NO or FALSE.

Reverse: Evaluated if the parser detects a SQL statement corresponding to the varia-
ble and it is not assigned NO or FALSE.

[$<variable>%? <true>
<false>]

Tests for the existence of the variable and allows conditional output.

Generation: <true> is generated if <variable> exists and is not assigned NO or

FALSE. Otherwise, <false> is generated.

Reverse: If the parser detects <variable>anditis not assigned NO or FALSE,
<true>isreversed. Otherwise, <false>isreversed. <variable>is setto True or

False as appropriate.

[$<variable>%=<constant>?
<true> : <false>]

Tests the value of the variable and allows conditional output.

Generation: If <variable> equals <constant>, <true> is generated. Otherwise,
<false>is generated.

Reverse: If the parser detects that<variable> equals <constant>, <true>isre-

versed. Otherwise, <false> is reversed.

[.Z: [<iteml>]
[<item2>]...]

Specifies that the <i tems> do not have a significant order.
Generation: . 7 is ignored

Reverse: The <items> can be reversed in any order they are encountered.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 231

Variable Generation
[.0: [<iteml>] Specifies that the <items> are synonyms, only one of which should be output.
[<item2>]...]
Generation: Only the first <item> listed is generated.
Reverse: The reverse parser must find one of the <i tems> to validate the full state-
ment.
Examples

L4 [$OPTIONSS]

If s0PTTONS% (physical options for the objects visible in the object property sheet) exists and is not assigned
NO or FALSE, it is generated to the value of $0PTIONS%.

o [default $DEFAULTS%]

If the statement default

10 is found during reverse engineering, $DEFAULTS is assigned the value 10, but

the statement is not mandatory and reversing continues even if it is absent. In script generation, if $DEFAULTS
has a value of 10, it is generated as default 10 otherwise nothing is generated for the block.

° [$MAND%? not null

null]

If $MANDS is evaluated as true or contains a value other than False or NO, it is generated as not null.

Otherwise it is generated as nul1l.

L4 [$DELCONST%=RESTRICT?: [on delete %DELCONSTS]]

If $DELCONST% contains the value RESTRICT, it is generated as on delete RESTRICT.

L4 %SCOLUMNS S%DATATYPES[.Z: [SNOTNULL%] [3DEFAULTS]]

Because of the presence of the . z variable, both of the following statements will be reversed correctly even

though the column attributes are not in the same order:

O Create table abc

O Create table abc

(a integer not null default 99)
(a integer default 99 not null)

° [.0: [procedure] [proc]]

This statement will generate procedure. During reverse engineering, the parser will match either procedure

or proc keywords.

1 Note

A string between square brackets is always generated. For reverse engineering, placing a string between
square brackets means that it is optional and its absence will not cancel the reversing of the statement.

create [or replace]

view $VIEWS as %$SQL%

A script containing either create or create or replace will be correctly reversed because or replaceis

optional.

Customizing and Extending PowerDesigner

232 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.10.2 Formatting Variable Values

You can specify a format for variable values. For example, you can force values to lowercase or uppercase,
truncate the length of values, or place values between quotes.

You embed formatting options in variable syntax as follows:
SI[?][-]1[<x>][.[-1<y>] [<options>]:]<variable>$%

The variable formatting options are the following:

Table 98:
Option Description
? Mandatory field, if a null value is returned the translate call fails

[-][<x>].[-]1<y>[M] Extracts the first <y> characters or, for —<y>, the last <y> characters.

If <x> is specified, and <y> is lower than <x>, then blanks or zeros are added to the right of
the extracted characters to fill the width up to <x>. For —<x>, the blanks or zeros are
added to the left and the output is right-justified.

If the M option is appended, then the first <x> characters of the variable are discarded and
the next <y> characters are output.

Thus, for an object named abcdefghijklmnopgrstuvwxyz (with parentheses
present simply to demonstrate padding):

Template Output
(%.3:Name$%) gives (abc)
(%.-3:Name%) gives (xyz)
(%$10.3:Name%) gives (abc)
($10.-3:Name%) gives (xyz)
($-10.3:Name%) gives (abc)
($-10.-3:Name%) gives (XyZz)
($10.3M:Name%) gives (7k1)

L[F],U[F],andc

Converts the output to lowercase or uppercase. If F is specified, only the first character is

converted. c is equivalent to UF.

gandQ Surrounds the variable with single or double quotes.
T Trims leading and trailing whitespace from the variable.
H Converts number to hexadecimal.

You can combine format codes. For example, the template (212.3QMFU:Name%) applied to object
abcdefghijklmnopgrstuvwxyz generates ("Lmn").

Customizing and Extending PowerDesigner

DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 233

4.10.3 Variables for Tables and Views

PowerDesigner can use variables in the generation and reverse-engineering of tables and views.

The following variables are available for tables:

Table 99:
Variable Comment
%TABLE% Generated code of Table
% TNAME% Name of Table
%TCODE% Code of Table
%TLABL% Comment of Table
%PKEYCOLUMNS% List of primary key columns. Ex: A, B
%TABLDEFN% Complete body of Table definition. It contains definition of columns, checks and

keys

%CLASS% Abstract data type name
%CLASSOWNER% Owner of the class object
%CLASSQUALIFIER% Qualifier of the class object
%CLUSTERCOLUMNS% List of columns used for a cluster
%INDXDEFN% Table indexes definition
%TABLTYPE% Table type

The following variables are available for views:

Table 100:
Variable Comment
%VIEW% Generated code of View
%VIEWNAME% View name
%VIEWCODE% View code

%VIEWCOLN% List of columns of View. Ex: "A, B, C"

%SQL% SQL text of View. Ex: Select * from T1

%VIEWCHECK% Contains Keyword "with check option" if this option is selected in View

%SCRIPT%

Complete view creation order. Ex: create view V1 as select * from T1

Customizing and Extending PowerDesigner

234 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Variable Comment

%VIEWSTYLE% Style of view: view, snapshot, materialized view
%ISVIEW% Trueisitis aview (and not a snapshot)
%USAGE% Read-only=0, Updatable=1, Check option=2

The following variables are available for tables and views:

Table 101:
Variable Comment
%XMLELEMENT % Element contained in the XML schema
%XMLSCHEMA% XML schema

4.10.4 Variables for Columns, Domains, and Constraints

PowerDesigner can use variables in the generation and reverse-engineering of columns, domains, and
constraints. Parent table variables are also available.

The following variables are available for columns:

Table 102:
Variable Comment
%COLUMN% Generated code of Column
%COLNNO% Position of Column in List of columns of Table
%COLNNAME% Name of Column
%COLNCODE% Code of Column
%PRIMARY % Contains Keyword "primary" if Column is primary key column
%ISPKEY% TRUE if Column is part of a primary key
%ISAKEY% TRUE if Column is part of an alternate key
%FOREIGN% TRUE if Column is part of a foreign key
%COMPUTE% Compute constraint text
%PREVCOLN% Code of the previous column in the list of columns of the table
%NEXTCOLN% Code of the next column in the list of columns of the table

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 235

Variable Comment

%NULLNOTNULL% Mandatory status of a column. This variable is always used with NullRequired item, see
Working with Null Values [page 177]

%PKEYCLUSTER% CLUSTER keyword for the primary key when it is defined on the same line

%AKEYCLUSTER% CLUSTER keyword for the alternate key when it is defined on the same line

%AVERAGELENGTH% Average length

%ISVARDTTP%

TRUE if the column datatype has a variable length

%ISLONGDTTP%

TRUE if the column datatype is a long datatype but not an image or a blob

%ISBLOBDTTP%

TRUE if the column datatype is an image or a blob

%ISSTRDTTP%

TRUE if the column datatype contains characters

The following variables are available for domains:

Table 103:

Variable

%DOMAIN%

Comment

Generated code of Domain (also available for columns)

%DEFAULTNAME%

Name of the default object associated with the domain (SQL Server specific)

The following variables are available for constraints:

Table 104:
Variable Comment
%UNIT% Unit attribute of standard check
%FORMAT% Format attribute of standard check
%DATATYPE% Data type. Ex: int, char(10) or numeric(8, 2)
%DTTPCODE% Data type code. Ex: int, char or numeric
%LENGTH% Data type length. Ex: O, 10 or 8
%PREC% Data type precision. Ex: 0, 0 or 2
%ISRDONLY% TRUE if Read-only attribute of standard check has been selected
%DEFAULT% Default value
%MINVAL% Minimum value

236 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
DBMS Definition Files

Variable Comment

%MAXVAL% Maximum value

%VALUES% List of values. Ex: (0,1, 2, 3,4, 5)

%LISTVAL% SQL constraint associated with List of values. Ex: C1in (0,1, 2, 3,4, 5)

%MINMAX%

SQL constraint associated with Min and max values. Ex: (C1 <= 0) AND (C1>=5)

%ISMAND%

TRUE if Domain or column is mandatory

%MAND% Contains Keywords "null" or "not null" depending on Mandatory attribute
%NULL% Contains Keyword "null" if Domain or column is not mandatory
%NOTNULL% Contains Keyword "not null" if Domain or column is mandatory

%IDENTITY%

Keyword "identity" if Domain or Column is identity (ASE/SQL Anywhere specific)

%WITHDEFAULT%

Keyword "with default" if Domain or Column is with default

%ISUPPERVAL%

TRUE if the upper-case attribute of standard check has been selected

%ISLOWERVAL%

TRUE if the lower-case attribute of standard check has been selected

%UPPER% SQL constraint associated with upper only values
%LOWER% SQL constraint associated with lower only values
%CASE% SQL constraint associated with cases (upper, lower, first word capital, etc)

4.10.5 Variables for Keys

PowerDesigner can use variables in the generation and reverse-engineering of keys.

Table 105:

VELELE

%COLUMNS% or %COLNLIST%

Comment

List of columns of Key. Ex: "A, B, C"

%ISPKEY%

TRUE when Key is Primary key of Table

%PKEY% Constraint name of primary key
%AKEY % Constraint name of alternate key
%KEY% Constraint name of the key

Customizing and Extending PowerDesigner
DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

237

Variable Comment
%ISMULTICOLN% True if the key has more than one column
%CLUSTER% Cluster keyword

4.10.6 Variables for Indexes and Index Columns

PowerDesigner can use variables in the generation and reverse-engineering of indexes and index columns.

The following variables are available for indexes:

Table 106:
%INDEX% Generated code of index
%TABLE% Generated code of the parent of an index, can be a table or a query table (view)
%INDEXNAME% Index name
%INDEXCODE% Index code
%UNIQUE% Contains Keyword "unique" when index is unique
%INDEXTYPE% Contains index type (available only for a few DBMS)
%CIDXLIST% List of index columns with separator, on the same line. Example: A asc, B desc, C asc
%INDEXKEY % Contains keywords "primary", "unique" or "foreign" depending on index origin
%CLUSTER% Contains keyword "cluster" when index is cluster
%INDXDEFN% Used for defining an index within a table definition

The following variables are available for index columns:

Table 107:
Variable Comment
%ASC% Contains keywords "ASC" or "DESC" depending on sort order
%ISASC% TRUE if index column sort is ascending

Customizing and Extending PowerDesigner
238 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.10.7 Variables for References and Reference Columns

PowerDesigner can use variables in the generation and reverse-engineering of references and reference columns.

The following variables are available for references:

Table 108:
Variable Comment
%REFR% Generated code of reference
%PARENT% Generated code of parent table
%PNAME% Name of parent table
%PCODE% Code of parent table

%PQUALIFIER%

Qualifier of parent table. See also QUALIFIER.

%CHILD%

Generated code of child table

%CNAME%

Name of child table

%CCODE%

Code of child table

%CQUALIFIER%

Qualifier of child table. See also QUALIFIER.

%REFRNAME%

Reference name

%REFRCODE%

Reference code

%FKCONSTRAINT%

Foreign key (reference) constraint name

%PKCONSTRAINT%

Constraint name of primary key used to reference object

%CKEYCOLUMNS% List of parent key columns. Ex: C1, C2, C3

%FKEYCOLUMNS% List of child foreign key columns. Ex: C1, C2, C3

%UPDCONST% Contains Update declarative constraint keywords "restrict", "cascade", "set null" or "set
default”

%DELCONST% Contains Delete declarative constraint keywords "restrict", "cascade", "set null" or "set

default"

%MINCARD%

Minimum cardinality

%MAXCARD% Maximum cardinality
%POWNER% Parent table owner name
%COWNER% Child table owner name

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 239

Variable Comment

%CHCKONCMMT% TRUE when check on commit is selected on Reference (ASA 6.0 specific)
%REFRNO% Reference number in child table collection of references

%JOINS% References joins.

The following variables are available for reference columns:

Table 109:
Variable Comment
%CKEYCOLUMN% Generated code of parent table column (primary key)
%FKEYCOLUMN% Generated code of child table column (foreign key)
%PK% Generated code of primary key column
%PKNAME% Primary key column name
%FK% Generated code of foreign key column
%FKNAME% Foreign key column name
%AK% Alternate key column code (same as PK)
%AKNAME% Alternate key column name (same as PKNAME)
%COLTYPE% Primary key column data type
%COLTYPENOOWNER% Primary column owner
%DEFAULT% Foreign key column default value
%HOSTCOLTYPE% Primary key column data type used in procedure declaration. For example: without

length

4.10.8 Variables for Triggers and Procedures

PowerDesigner can use variables in the generation and reverse-engineering of triggers and procedures.

The following variables are available for triggers:

Table 110:

VElELI Comment

%O0ORDER% Order number of Trigger (in case DBMS support more than one trigger of one type)

Customizing and Extending PowerDesigner

240 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

VELELE

%TRIGGER%

Comment

Generated code of trigger

%TRGTYPE%

Trigger type. It contains Keywords "beforeinsert", "afterupdate”, ...etc.

%TRGEVENT%

Trigger event. It contains Keywords "insert", "update", "delete"

%TRGTIME%

Trigger time. It contains Keywords NULL, "before", "after"

%REFNO% Reference order number in List of references of Table

%ERRNO% Error number for standard error

%ERRMSG% Error message for standard error

%MSGTAB% Name of Table containing user-defined error messages

%MSGNO% Name of Column containing Error numbers in User-defined error table
%MSGTXT% Name of Column containing Error messages in User-defined error table

%SCRIPT%

SQL script of trigger or procedure.

%TRGBODY% Trigger body (only for Oracle live database reverse engineering)
%TRGDESC% Trigger description (only for Oracle live database reverse engineering)
%TRGDEFN% Trigger definition

%TRGSCOPE% Trigger scope (keywords: database, schema, all server)
%TRGSCOPEOWNER% Trigger scope owner

%TRGSCOPEQUALIFIER%

Trigger scope owner plus dot

The following variables are available for procedures:

Table 111:
Variable Comment
%PROC% Generated code of Procedure (also available for trigger when Trigger is implemented with a proce-
dure)
%FUNC% Generated code of Procedure if Procedure is a function (with a return value)
%PROCPRMS% List of parameters of the procedure

Customizing and Extending PowerDesigner

DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

4.10.9 Variables for Rules

PowerDesigner can use variables in the generation and reverse-engineering of rules.

Table 112:
Variable Comment
%RULE% Generated code of Rule
%RULENAME% Rule name
%RULECODE% Rule code
%RULECEXPR% Rule client expression
%RULESEXPR% Rule server expression

4.10.10 Variables for Sequences

PowerDesigner can use variables in the generation and reverse-engineering of sequences.

Table 113:
Variable Comment
%SQNC% Name of sequence
%SQNCOWNER% Name of the owner of the sequence

4.10.11 Variables for Synonyms

PowerDesigner can use variables in the generation and reverse-engineering of synonyms.

Table 114:
%SYNONYM% Generated code of the synonym
%BASEOBJECT% Base object of the synonym
%BASEOWNER% Owner of the base object
%BASEQUALIFIER% Qualifier of the base object
%VISIBILITY% Private (default) or public

Customizing and Extending PowerDesigner
242 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Variable Comment

%SYNMTYPE% Synonym of alias (DB2 only)
%ISPRIVATE% True for a private synonym
%ISPUBLIC% True for a public synonym

4.10.12 Variables for Tablespaces and Storages

PowerDesigner can use variables in the generation and reverse-engineering of tablespaces and storages.

Table 115:
Variable Comment
%TABLESPACE% Generated code of Tablespace
%STORAGE% Generated code of Storage

4.10.13 Variables for Abstract Data Types

PowerDesigner can use variables in the generation and reverse-engineering of abstract data types and their child
objects.

The following variables are available for abstract data types:

Table 116:
Variable Comment
%ADT% Generated code of Abstract data type
%TYPE% Type of Abstract data type. It contains keywords like "array"”, "list", ...
%SIZE% Abstract data type size
%FILE% Abstract data type Java file
%ISARRAY % TRUE if Abstract data type is of type array
%ISLIST% TRUE if Abstract data type is of type list
%ISSTRUCT% TRUE if Abstract data type is of type structure
%ISOBJECT% TRUE if Abstract data type is of type object

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 243

VElGELI

%ISJAVAOBJECT%

Comment

%ISJAVA%

%ADTDEF% Contains Definition of Abstract data type
%ADTBODY% Abstract data type body
%SUPERADT% Abstract data type supertype

%ADTNOTFINAL%

Abstract data type final

%ADTABSTRACT% Abstract data type instantiable
%ADTHEADER% Abstract data type body with ODBC
%ADTTEXT% Abstract data type spec with ODBC

%SUPERQUALIFIER%

Abstract data type supertype qualifier

TRUE if Abstract data type is of type JAVA object

TRUE if Abstract data type is of type JAVA class

%SUPEROWNER% Abstract data type supertype owner
%ADTAUTH% Abstract data type authorization
%ADTJAVANAME% Abstract data type JAVA name
%ADTJAVADATA% Abstract data type JAVA data
%ADTATTRDEF% Attributes part of abstract data type definition
%ADTMETHDEF % Methods part of abstract data type definition

The following variables are available for abstract data type attributes:

Table 117:
Variable Comment
%ADTATTR% Generated code of Abstract data type attribute
%ATTRJAVANAME% Abstract data type attribute JAVA name

The following variables are available for abstract data type procedures:

Table 118:
Variable Comment
%ADTPROC% Procedure code
%PROCTYPE% Procedure type (constructor, order, map)

Customizing and Extending PowerDesigner

244 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Variable Comment

%PROCFUNC% Procedure type (procedure, function)
%PROCDEFN% Procedure body (begin... end)
%PROCRETURN% Procedure return type

%PARAM% Procedure parameters
%PROCNOTFINAL% Procedure final

%PROCSTATIC% Procedure member
%PROCABSTRACT% Procedure instantiable
%SUPERPROC% Procedure super-procedure
%ISCONSTRUCTOR% True if the procedure is a constructor
%PROCJAVANAME% Procedure JAVA name

%ISJAVAVARY% True if procedure is mapped to a static JAVA variable
%ISSPEC% True in specifications, undefined in body

4.10.14 Variables for Join Indexes (1Q)

PowerDesigner can use variables in the generation and reverse-engineering of 1Q join indexes.

Table 119:
Variable Comment
%JIDX% Generated code for join index
%JIDXDEFN% Complete body of join index definition
%REFRLIST% List of references (for live database connections)
%RFJINLIST% List of reference joins (for live database connections)
%FACTQUALIFIER% Qualifier for the fact table
%JIDXFACT% Fact (base table)
%JIDXCOLN% List of columns
%JIDXFROM% From clause

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 245

VElGELI Comment

%JIDXWHERE% Where clause

4.10.15 Variables for ASE & SQL Server

PowerDesigner can use variables in the generation and reverse-engineering of objects for ASE and SQL Server.

Table 120:
Variable Comment
%RULENAME% Name of Rule object associated with Domain
%DEFAULTNAME% Name of Default object associated with Domain
%USE_SP_PKEY% Use sp_primary key to create primary keys
%USE_SP_FKEY% Use sp_foreign key to create foreign keys

4.10.16 Variables for Database Synchronization

PowerDesigner can use variables in the generation and reverse-engineering of objects during database
synchronization.

Table 121:
Variable Comment
%OLDOWNER% Old owner name of Object. See also OWNER
%NEWOWNER% New owner name of Object. See also OWNER
%OLDQUALIFIER% Old qualifier of Object. See also QUALIFIER
%NEWQUALIFIER% New qualifier of Object. See also QUALIFIER
%OLDTABL% Old code of Table
%NEWTABL% New code of Table
%OLDCOLN% Old code of Column
%NEWCOLN% New code of Column
%OLDNAME% Old code of Sequence

Customizing and Extending PowerDesigner
246 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

VELELE Comment

%NEWNAME% New code of Sequence

4.10.17 Variables for DB Packages and Their Child Objects

PowerDesigner can use variables in the generation and reverse-engineering of database packages and their child
objects.

The following variables are available for database packages:

Table 122:
Variable Comment
%DBPACKAGE% Generated code of the database package
%DBPACKAGECODE% Initialization code at the end of the package
%DBPACKAGESPEC% Database package specification
%DBPACKAGEBODY% Database package body
%DBPACKAGEINIT% Database package initialization code
%DBPACKAGEPRIV% Database package authorization (old privilege)
%DBPACKAGEAUTH% Database package authorization
%DBPACKAGEPUBLIC% True for public sub-object
%DBPACKAGETEXT% Database package body with ODBC
%DBPACKAGEHEADER% Database package spec with ODBC

The following variables are available for database package procedures:

Table 123:
%DBPKPROC% Procedure code
%DBPKPROCTYPE% Procedure type (procedure, function)
%DBPKPROCCODE% Procedure body (begin... end)
%DBPKPROCRETURN% Procedure return type
%DBPKPROCPARAM% Procedure parameters

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 247

The following variables are available for database package variables:

Table 124:
%DBPFVAR% Variable code
%DBPFVARTYPE% Variable type
%DBPFVARCONST% Variable of constant type
%DBPFVARVALUE% Variable default value for constant

The following variables are available for database package types:

Table 125:
Variable Comment
%DBPKTYPE% Type code
%DBPKTYPEVARY% List of variables

%DBPKISSUBTYPE%

True if type is a subtype

The following variables are available for database package cursors:

Table 126:

Variable

%DBPKCURSOR%

Comment

Cursor code

%DBPKCURSORRETURN%

Cursor return type

%DBPKCURSORQUERY%

Cursor query

%DBPKCURSORPARAM%

Cursor parameter

The following variables are available for database package exceptions:

Table 127:

VElGELI

%DBPKEXEC%

Comment

Exception code

The following variables are available for database package parameters:

Table 128:

Variable

%DBPKPARM%

Comment

Parameter code

248 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
DBMS Definition Files

Variable Comment
%DBPKPARMTYPE% Parameter type
%DBPKPARMDTTP% Parameter data type

%DBPKPARMDEFAULT%

Parameter default value

The following variables are available for database package pragmas:

Table 129:
Variable Comment
%DBPKPRAGMA% Pragma directive
%DBPKPRAGMAOBJ% Pragma directive on object

%DBPKPRAGMAPARAM%

Pragma directive parameter

4.10.18 Variables for Database Security

PowerDesigner can use variables in the generation and reverse-engineering of database security objects.

Table 130:

VElELE

%PRIVLIST%

Comment

List of privileges for a grant order

%REVPRIVLIST%

List of privileges for a revoke order

%PERMLIST%

List of permissions for a grant order

%REVPERMLIST%

List of permissions for a revoke order

%COLNPERMISSION%

Permissions on a specific list of columns

%BITMAPCOLN% Bitmap of specific columns with permissions
%USER% Name of the user

%GROUP% Name of the group

%ROLE% Name of the role

%GRANTEE% Generic name used to design a user, a group, or arole
%PASSWORD% Password for a user, group, or role

Customizing and Extending PowerDesigner
DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

249

VElGELI

%O0BJECT%

Comment

Database objects (table, view, column, and so on)

%PERMISSION%

SQL grant/revoke order for a database object

%PRIVILEGE%

SQL grant/revoke order for an ID (user, group, or role)

%GRANTOPTION%

Option for grant: with grant option / with admin option

%REVOKEOPTION%

Option for revoke: with cascade

%GRANTOR% User that grants the permission

%MEMBER% Member of a group or member with a role

%GROUPS% List of groups separated by the delimiter

%MEMBERS% List of members (users or roles) of a group or role separated by the delimiter
%ROLES% List of parent roles of a user or role

%SCHEMADEFN% Schema definition

4.10.19 Variables for Defaults

PowerDesigner can use variables in the generation and reverse-engineering of defaults.

Table 131:

Variable

Comment

%BOUND_OBJECT% Binded object

4.10.20 Variables for Web Services

PowerDesigner can use variables in the generation and reverse-engineering of Web services.

The following variables are available for web services:

Table 132:
Variable Comment
%WEBSERVICENAME% Only generated code of the web service
%WEBSERVICE% Generated code of the web service and local path

Customizing and Extending PowerDesigner
250 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Variable Comment
%WEBSERVICETYPE% Web service type
%WEBSERVICESQL% SQL statement
%WEBSERVICELOCALPATH% Local path

The following variables are available for web service operations:

Table 133:

VElELE

%WEBOPERATIONNAME%

Comment

Only generated code of the web operation

%WEBOPERATION% Generated code of the operation, service, and local path
%WEBOPERATIONTYPE% We operation type
%WEBOPERATIONSQL% SQL statement

%WEBOPERATIONPARAM%

Web operation parameters list

The following variables are available for web service security:

Table 134:

VElELE

Comment

%WEBUSER%

Connection user required for web service

%WEBCNCTSECURED%

Connection secured

%WEBAUTHREQUIRED%

Authorization required

The following variables are available for web service parameters:

Table 135:
Variable Comment
%WEBPARAM% List of web parameters
%WEBPARAMNAME% Web parameter name
%WEBPARAMTYPE% Web parameter type
%WEBPARAMDTTP% Web parameter data type
%WEBPARAMDEFAULT% Web parameter default value

Customizing and Extending PowerDesigner
DBMS Definition Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 251

4.10.21 Variables for Dimensions

PowerDesigner can use variables in the generation and reverse-engineering of dimensions.

Table 136:

Variable Comment

%DIMENSION%

Generated code of dimension

%DIMNDEF%

Dimension definition

%DIMNATTR%

Dimension attribute (level)

%DIMNOWNERTABL%

Level table owner

%DIMNTABL%

Level table

%DIMNCOLN%

Level column

%DIMNCOLNLIST%

Level columns list

%DIMNHIER%

Dimension hierarchy

%DIMNKEY%

List of child key columns

%DIMNKEYLIST%

List of child key columns

%DIMNLEVELLIST%

Level list for hierarchy

%DIMNATTRHIER%

Attribute of hierarchy

%DIMNATTRHIERFIRST%

First attribute of hierarchy

%DIMNATTRHIERLIST%

List of attributes of hierarchy

%DIMNPARENTLEVEL%

Parent level for hierarchy

%DIMNDEPATTR%

Dimension dependant attribute

%DIMNDEPCOLN%

Dependent column

%DIMNDEPCOLNLIST%

List of dependent columns

252 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
DBMS Definition Files

4.10.22 Variables for Extended Objects

PowerDesigner can use variables in the generation and reverse-engineering of extended objects.

Table 137:
Variable Comment
%EXTENDEDOBJECT% Generated code for extended object
%EXTENDEDSUBOBJECT% Generated code for extended sub-object
%EXTSUBOBJTPARENT% Generated code for parent of extended sub-object

%EXTSUBOBJTPARENTOWNER% | Generated code for owner of extended sub-object

%EXTSUBOBJTPARENTQUALIFIER | Parent object qualifier (database prefix and owner prefix)
%

%EXTOBJECTDEFN% Complete body of the extended object definition. Contains definition of extended collec-
tion listed in DefinitionContent DBMS item.

4.10.23 Variables for Reverse Engineering

PowerDesigner can use variables during the reverse engineering of objects.

Table 138:

Variable Comment

%R% Set to TRUE during reverse engineering

%S % Allow to skip a word. The string is parsed for reverse but not generated

%D% Allow to skip a numeric value. The numeric value is parsed for reverse but not generated

%A% Allow to skip all Text. The text is parsed for reverse but not generated

%ISODBCUSER% True if Current user is Connected one

%CATALOG% Catalog name to be used in live database connection reverse queries

%SCHEMA% Variable representing a user login and the object belonging to this user in the database. You
should use this variable for queries on objects listed in database reverse dialog boxes, be-
cause their owner is not defined yet. Once the owner of an object is defined, you can use
SCHEMA or OWNER

%SIZE% Data type size of column or domain. Used for live database reverse, when the length is not
defined in the system tables

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 253

VElGELI

%VALUE%

Comment

One value from the list of values in a column or domain

%PERMISSION%

Allow to reverse engineer permissions set on a database object

%PRIVILEGE%

Allow to reverse engineer privileges set on a user, a group, or a role

4.10.24 Variables for Database, Triggers, and Procedures
Generation

PowerDesigner can use variables in the generation of databases, triggers, and procedures.

Table 139:
Variable Comment
%DATE% Generation date & time
%USER% Login name of User executing Generation

%PATHSCRIPT%

Path where File script is going to be generated

%NAMESCRIPT%

Name of File script where SQL orders are going to be written

%STARTCMD%

Description to explain how to execute Generated script

%ISUPPER%

TRUE if upper case generation option is set

%ISLOWER%

TRUE if lower case generation option is set

%DBMSNAME% Name of DBMS associated with Generated model
%DATABASE% Code of Database associated with Generated model
%DATASOURCE% Name of the data source associated with the generated script

%USE_SP_PKEY%

Use stored procedure primary key to create primary keys (SQL Server specific)

%USE_SP_FKEY%

Use stored procedure foreign key to create primary keys (SQL Server specific)

254 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
DBMS Definition Files

4.10.25 .AKCOLN, .FKCOLN, and .PKCOLN Macros

Repeat a statement for each alternate, foreign, or primary key column in a table.

Syntax

.AKCOLN ("<statement>", "<prefix>",6 "<suffix>",6 "<last suffix>", "<condition>")
.FKCOLN ("<statement>", "<prefix>",6 "<suffix>", "<last suffix>")

.PKCOLN ("<statement>", "<prefix>",6 "<suffix>", "<last suffix>")

Table 140:
Argument Description
<statement> Statement to repeat for each column
<prefix> Prefix for each new line
<suffix>

Suffix for each new line

< x> i i
last_suffix Suffix for the last line

<condition> Alternate key code (if condition argument is left empty the macro returns a statement for each alter-

nate key in the table)

Example

In a trigger for the table TITLEAUTHOR:
[message .AKCOLN ("'$COLUMN% is an alternate key column'","", "", "", "AKEY1")
generates the following trigger script:
message 'TA ORDER is an alternate key column',
[message .FKCOLN ("'$COLUMNS% is a foreign key column'","",",",";")
generates the following trigger script:

message 'AU ID is a foreign key column,
TITLE ISBN is a foreign key column;'

® message .PKCOLN("'%COLUMN% is a primary key column'","",",",";")
generates the following trigger script:

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 255

message 'AU ID is a primary key column',
'TITLE ISBN is a primary key column';

1 Note

For columns, these macros only accept the $COLUMN% variable.

4.10.26 .ALLCOL Macro

Repeats a statement for each column in a table

Syntax

.ALLCOL ("<statement>", "<prefix>",6 "<suffix>","<last suffix>")

Table 141:

Argument Description

<statement> Statement to repeat for each column
<prefix> Prefix for each new line

<suffix> Suffix for each new line

<last suffix> Suffix for the last line

Example

In a trigger for the table AUTHOR, the following macro:
.ALLCOL ("$COLUMN% %COLTYPES%","",",",";")

generates the following trigger script:

AU ID char(12),

AU LNAME varchar (40),

AU FNAME varchar (40),

AU BIOGRAPH long varchar,
AU ADVANCE numeric(8,2),
AU ADDRESS varchar (80),
CITY varchar (20),

STATE char(2),

POSTALCODE char(5),

AU PHONE char(12);

Customizing and Extending PowerDesigner
256 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.10.27 .DEFINE Macro

Defines a variable and initializes its value

Syntax

.DEFINE "<variable>" "<value>"

Table 142:

Argument Description

<variable> Variable name (without % signs)

<value> Variable value (may include another variable surrounded by % signs)
Example

In a trigger for the table AUTHOR, the following macro:

.DEFINE "TRIGGER" "T S$TABLE%"
message 'Error: Trigger ($TRIGGER%) of table $TABLES'

generates the following trigger script:

message 'Error: Trigger (T AUTHOR) of table AUTHOR';

4.10.28 .DEFINEIF Macro

Defines a variable and initializes its value if the test value is not null

Syntax

.DEFINEIF "<test value>""<variable>" "<value>"

Customizing and Extending PowerDesigner

DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved.

257

Table 143:

Argument Description

< >
test value Value to test

<variable> Variable name (without % signs)
<value> Variable value (may include another variable surrounded by % signs)
Example

For example, to define a variable for a default data type:

$DEFAULTS
.DEFINEIF "$DEFAULTS%" " DEFLT"" "$DEFAULT%"
Add %COLUMN% S$DATATYPEZ % DEFLT%

4.10.29 .ERROR Macro

Handles errors.

Syntax

.ERROR (<errno>, "<errmsg>")

Table 144:
Argument Description
serrno> Error number
<errmsg> Error message
Example

.ERROR (-20001, "Parent does not exist, cannot insert child")

Customizing and Extending PowerDesigner
258 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.10.30 .FOREACH_CHILD Macro

Repeats a statement for each parent-to-child reference in the current table fulfilling a condition.

Syntax

.FOREACH CHILD ("<condition>")

"<statement>"

.ENDFOR
Table 145:
Argument Description
<condition> Reference condition (see below)
<statement> Statement to repeat
Table 146:
Condition Selects
UPDATE RESTRICT Restrict on update
UPDATE CASCADE Cascade on update
UPDATE SETNULL Set null on update
UPDATE SETDEFAULT Set default on update
DELETE RESTRICT Restrict on delete
DELETE CASCADE Cascade on delete
DELETE SETNULL Set null on delete
DELETE SETDEFAULT Set default on delete
Example

In a trigger for the table TITLE, the following macro:

.FOREACH CHILD ("DELETE RESTRICT")
—-— Cannot delete parent "S$PARENTS" if children still exist in "S$CHILDS"
.ENDFOR

generates the following trigger script:

—-- Cannot delete parent "TITLE" if children still exist in "ROYSCHED"

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 259

-- Cannot delete parent "TITLE" if children still exist in "SALE"
-- Cannot delete parent "TITLE" if children still exist in "TITLEAUTHOR"

4.10.31 .FOREACH_COLUMN Macro

Repeats a statement for each column in the current table fulfilling a condition.

Syntax

.FOREACH COLUMN ("<condition>")

"<statement>"
.ENDFOR
Table 147:
Argument Description
<condition>

Column condition (see below)

<statement> Statement to repeat
Table 148:

Condition Selects

empty All columns

PKCOLN Primary key columns

FKCOLN Foreign key columns

AKCOLN Alternate key columns

NMFCOL Non-modifiable columns (columns that have Cannot Modify selected as a check parameter)
INCOLN Triggering columns (primary key columns, foreign key columns; and non-modifiable columns)
Example

In a trigger for the table TITLE, the following macro:

.FOREACH_COLUMN("NMFCOL")
—-— "$COLUMNS" cannot be modified
.ENDFOR

Customizing and Extending PowerDesigner
260 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

generates the following trigger script:

-— "TITLE ISBN" cannot be modified
-- "PUB ID" cannot be modified

4.10.32 .FOREACH_PARENT Macro

Repeats a statement for each child-to-parent reference in the current table fulfilling a condition.

Syntax

.FOREACH PARENT ("<condition>")

"<statement>"
.ENDFOR
Table 149:
Argument Description
<condition>

Reference condition (see below)

<statement> Statement to repeat
Table 150:
Condition Selects references defined with ...
empty All references
FKNULL Non-mandatory foreign keys
FKNOTNULL Mandatory foreign keys
FKCANTCHG Non-modifiable foreign keys
Example

In a trigger for the table SALE, the following macro:

.FOREACH PARENT ("FKCANTCHG")
—-— Cannot modify parent code of "SPARENTS" in child "$CHILDS"
.ENDFOR

generates the following trigger script:

—-- Cannot modify parent code of "STORE" in child "SALE"

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 261

—-- Cannot modify parent code of "TITLE" in child "SALE"

4.10.33 .INCOLN Macro

Repeats a statement for each primary key column, foreign key column, alternate key column, or non-modifiable
columnin a table.

Syntax

.INCOLN ("<statement>", "<prefix>",6 "<suffix>","<last suffix>")

Table 151:
Argument Description
<statement> Statement to repeat for each column
<prefix> Prefix for each new line
<suffix> Suffix for each new line
<last_suffix> Suffix for the last line

Example

In a trigger for the table TITLE, the following macro:
.INCOLN ("%COLUMN% %COLTYPES","",",",";")
generates the following trigger script:

TITLE ISBN char (12),
PUB ID char(12);

Customizing and Extending PowerDesigner
262 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.10.34 .JOIN Macro

Repeats a statement for column couple in a join.

Syntax

.JOIN ("<statement>", "<prefix>", "<suffix>", "<last suffix>")

Table 152:

Argument Description

<statement> Statement to repeat for each column
<prefix> Prefix for each new line

<suffix> Suffix for each new line
<last_suffix> Suffix for the last line

Example

In a trigger for the table TITLE, the following macro:

.FOREACH PARENT ()

where .JOIN ("PK=%$FK%", " and", "", ";")

message 'Reference SREFR% links table $PARENTS$ to $CHILDS'
.ENDFOR

generates the following trigger script:

message 'Reference TITLE PUB links table PUBLISHER to TITLE

1 Note

For columns, the macro JOIN only accepts the variables %PK%, %AK%, and %FK%.

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 263

4.10.35 .NMFCOL Macro

Repeats a statement for each non-modifiable column in a table. Non-modifiable columns have Cannot Modify
selected as a check parameter.

Syntax

.NMFCOL ("<statement>", "<prefix>", "<suffix>","<last suffix>")

Table 153:
<statement> Statement to repeat for each column
<prefix> Prefix for each new line
<suffix> Suffix for each new line
<last_suffix> Suffix for the last line

Example

In a trigger for the table TITLE, the following macro:

.NMFCOL ("$COLUMN% %COLTYPESR","",",",";")

generates the following trigger script:

TITLE ISBN char (12),
PUB ID char (12);

Customizing and Extending PowerDesigner
264 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

4.10.36 .CLIENTEXPRESSION and .SERVEREXPRESSION
Macros

Uses the client and/or server expression of a business rule in the trigger template, template item, trigger, and
procedure script.

Syntax

.CLIENTEXPRESSION (<code of the business rule>)

.SERVEREXPRESSION (<code of the business rule>)

Example

The business rule ACTIVITY_DATE_CONTROL has the following server expression:
activity.begindate < activity.enddate

In a trigger based on template AfterDeleteTrigger, you type the following macro in the Definition tab of the trigger:
. SERVEREXPRESSION (ACTIVITY DATE CONTROL)

This generates the following trigger script:

activity.begindate < activity.enddate
end

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 265

EX1 Trigger Properties - Trigger_1 [TRIGGER_1]

Generall Definitiu:unl Template ltems Preview |N-:utes I Rulez I Yerzion Inh:ul

2-B-EEH sl o= A0 BE

~% After delete trigger "TRIGGZEE_1" for table "EMPLOY] &
create trigger TRIGGERE_1 after delete order 1 on EMPLO
referencing old a=s= old_del for sach row —
begin
declare user_defined_exception exception for SOLSET,
declare found integer:

activity.begindate < activitv.enddate
end

A hsaL f 4] | >|
<< Less | - k. I Cancel | Apply | Help |

4.10.37 .SQLXML Macro

Represents a SQL/XML query in the definition of a trigger, a procedure or a function.
Use one of the following tools:

e TheInsert SQL/XML Macro tool opens a selection dialog box where you choose a global element from an XML
model. The XML model must be open in the workspace, mapped to a PDM, and have the SQL/XML extension
file attached. Click OK in the dialog box and the SQLXML macro is displayed in the definition code, with the
code of the XML model (optional) and the code of the global element.

® The Macros tool, where you select . SQLXML() in the list. The SQLXML macro is displayed empty in the
definition code. You must fill the parentheses with the code of an XML model (optional), followed by :: and the
code of a global element. The XML model, from which you choose a global element, must be open in the
workspace, mapped to a PDM, and have the SQL/XML extension file attached.

After generation, the SQLXML macro is replaced by the SQL/XML query of the global element.
Syntax

.SQLXML (<code of an XML model>::<code of a global element>)

Note: the code of an XML model is optional.

Customizing and Extending PowerDesigner
266 © 2016 SAP SE or an SAP affiliate company. All rights reserved. DBMS Definition Files

Example

In a trigger for the table EMPLOYEE, the following macro:
.SQLXML (CorporateMembership: : DEPARTMENT)
generates the following trigger script:

select XMLELEMENT (NAME "Department", XMLATTRIBUTES (DEPNUM,DEPNAME),
(select XMLAGG (XMLELEMENT (NAME "Employee", XMLATTRIBUTES
(DEPNUM, EMPID, FIRSTNAME, LASTNAME)))
from EMPLOYEE
where DEPNUM = DEPNUM))
from DEPARTMENT

General | Body | Template tems | Defintion | Preview

|#] BeforeDelete Trigger (From DEMS)
before Evert: delete

S-F-HIA| % 2A2¢|[FRB| E- for Wr %[n7.cdl
create trigger 3TRIGGER% before delete crder %0RDER: on [3TRABLQUALIFIER%)3TAELE:
referencing old as old_del for each row
begin

declare user defined exception exception for SQLSTATE '939937;
declare found integer;

HEMLELEMENT { NAME ™ tment™, X 3UTES (DEFNUM, DCEFNAME) ,
. XMLA { XMLELEMENT (NAME "E , EMLATTRIBUTES (DEENUM, EMPIC, FIRSTNAME , LASTNAME))
EMPLOYEE
W DEPNUM = DEPNUM))
fror DEFARTMENT
end;

Customizing and Extending PowerDesigner
DBMS Definition Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 267

5 Customizing Generation with GTL

The PowerDesigner Generation Template Language (GTL) is used to extract model object properties as text. GTL
is written in templates and generated files defined under metaclasses in language definition and extension files. It
powers generation of code for business process, object-oriented and XML languages, and can be used to define
new generations for any model.

When you launch a generation from a model, PowerDesigner generates a file for each instance of each metaclass
for which you have defined a generated file (see Generated Files (Profile) [page 101]) by evaluating the templates
it calls and resolving any variables.

GTL is object-oriented, supporting inheritance and polymorphism for reusability and maintainability, and provides
macros for testing variables and iterating through collections, etc.

A GTL template can contain text, macros, and variables, and can reference:

e metamodel attributes, such as the name of a class or data type of an attribute
e collections, such as the list of attributes of a class or columns of a table
e other elements of the model, such as environment variables

1 Note

Though GTL can be used to extend generation in a PDM, the standard generation is primarily defined using a
different mechanism (see Database Generation and Reverse Engineering [page 140]).

5.1 Creating a Template and a Generated File

GTL templates are commonly used for generating files. If your template is going to be used in generation, it must
be referenced in a generated file.

Procedure

1. Open your language definition or extension file in the resource editor (see Opening Resource Files in the
Editor [page 10]).

2. If necessary, add a metaclass to the Profile category (see Metaclasses (Profile) [page 39]) and then right-
click it and select [» New » Template 3 (see Templates (Profile) [page 100]).

3. Enter helloWorld as the name of the template and enter the following code in the text box:

Hello World!
This template is being generated for the %$Name% object.

Customizing and Extending PowerDesigner
268 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

1 Note

We recommend that you name your templates using headless camelCase, (starting with a lowercase
letter), in order to avoid clashes with property and collection names which, by convention use full
CamelCase.

4. Right-click the metaclass again, and select | New » Generated File 3 (see Generated Files (Profile) [page
101)).

5. EntermyFile as the name of the generated file, and enter the following code in the text box to call your
template:

$helloWorld$%

6. Click OK to save your changes in the resource file and return to your model.

7. Create an instance of the metaclass on which you defined the template and generated file, open its property
sheet, and click the Preview tab.

8. Select the myFile sub-tab to preview what would be generated for this object.

5.2 Extracting Object Properties

Object properties are referenced as variables and enclosed between percent signs: $<variable>$%. Variable
names are case sensitive, and property names are, by convention, defined in CamelCase.

Properties are extracted as the following types:

e String - returns text.
® Boolean-returns true or false.

e Object - returns the object ID or null.

Table 154:

This file is generated for %Name%, which is a %Color% %$Shape%.
Result:

This file is generated for MyObject, which is a Red Triangle.

Standard properties defined in the PowerDesigner public metamodel (see The PowerDesigner Public Metamodel
[page 366]) are referenced using their public names, which are written in CamelCase. You can infer public names
for many properties from their labels in object property sheets, but in case of doubt, click the Property Sheet
Menu button at the bottom of the property sheet and select Find in Metamodel Objects Help to review all available
properties for the object.

Extended attributes (see Extended Attributes (Profile) [page 48]) are referenced by their Name defined in the
resource editor.

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 269

1 Note
To access an extended attribute defined in another extension file attached to the model, prefix the name with

the . D formatting option. For example:

%.D:MyExXtAttS

5.3 Accessing Collections of Sub-Objects or Related Objects

An OOM contains a collection of classes and classes contain collections of attributes and operations. To iterate
over a collection, use the . foreach_item macro.

Table 155:

%$Name% contains:

.foreach item(Widgets)
\n\t%Name% (%Color% %Shape%)

.next

Result:

MyObject contains:
Widgetl (Red Triangle)
Widget2 (Yellow Square)
Widget3 (Green Circle)

Standard collections defined in the PowerDesigner public metamodel (see The PowerDesigner Public Metamodel
[page 366]) are referenced using their public names, which are written in CamelCase. You can infer public names
for many collections from their labels in object property sheet tabs, but in case of doubt, click the Property Sheet
Menu button at the bottom of the property sheet and select Find in Metamodel Objects Help to review all available
collections for the object.

Extended collections (see Extended Collections and Compositions (Profile) [page 58] and Calculated Collections
(Profile) [page 61]) are referenced by their Name.

You can use the following keywords to access information about a collection:

Table 156:
First (object) Returns the first element of the collection.
IsEmpty (boolean) Returns True if the collection is empty, or false if it contains one or more members.
Count (integer) Returns the number of elements in the collection. You can use this keyword for defining crite-
ria based on collection size, for example Attributes.Count>=10.

Customizing and Extending PowerDesigner
270 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

Table 157:

%$Name% is associated with %AttachedRules.Count% business rules,
of which the first is $AttachedRules.First.Name%.

Result:

myClass is associated with 3 business rules,
of which the first is myRule.

5.4 Formatting Your Output

You can change the formatting of variables by embedding formatting options in variable syntax. New lines and
tabs are specified using the \n and \ t escape sequences respectively.

Sl[-1[<x>][.[-1<y>] [<options>]:]<variable>%

The following variable formatting options are available:
Table 158:

Option Description

[=]1[<x>].[-1<y>[M] Extracts the first <y> characters or, for —-<y>, the last <y> characters.

If <x> is specified, and <y> is lower than <x>, then blanks or zeros are added to the right of
the extracted characters to fill the width up to <x>. For —=<x>, the blanks or zeros are added
to the left and the output is right-justified.

If the M option is appended, then the first <x> characters of the variable are discarded and

the next <y> characters are output.

Thus, for an object named abcdefghijklmnopgrstuvwxyz (with parentheses present

simply to demonstrate padding):

Template Output
%.3:Name%) gives (abc)
(%$.-3:Name%) gives (xyz)
(%$10.3:Name¥%) gives (abc)
(%10.-3:Name%) gives (xyz)
($-10.3:Name%) gives (abc)
($-10.-3:Name%) gives (XYyZ)
($10.3M:Name%) gives (7k1)

L[F],U[F],andc

Converts the output to lowercase or uppercase. If F is specified, only the first character is

converted. c is equivalent to UF.

gandQ

Surrounds the variable with single or double quotes.

Customizing and Extending PowerDesigner
Customizing Generation with GTL

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 271

Option Description
A Removes indentation and aligns text on the left border.
T Trims leading and trailing whitespace from the variable.
H Converts number to hexadecimal.
D Returns the human-readable value of an attribute used in the PowerDesigner interface when
this value differs from the internal representation.
For example, the value of the Visibility attribute is stored internally as +, but is dis-
played as public inthe property sheet. The template $Visibility% generatesas +,
but$.D:Visibility% generatesaspublic.
1 Note
You can access extended attributes defined in another extension file by prefixing them
with the . D option (see Extracting Object Properties [page 269]).
X Escapes XML forbidden characters.
E [deprecated — use the | power evaluation operator instead, see GTL Operators [page 275]].
Table 159:

This file is generated for %.UQ:Name$. It has the form of a $.L:Color% %.L:Shape%.

This file is generated for "MYGADGET". It has the form of a red triangle.

The following template is applied to object abcdefghijklmnopgrstuvwxyz
%12 .3QMFU:Name$%
Result:

"Tmn"

Customizing and Extending PowerDesigner
272 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

5.4.1 Controlling Line Breaks in Head and Tail Strings

The head and tail strings in a macro block are only generated when necessary. If the block returns nothing then
the head and tail strings do not appear, which can help to control the creation of new lines.

Table 160:

The text and new lines in the head and tail of each . foreach itemloop are only printed if the collection is not empty. When
this template is applied to a class with attributes but no operations, the text // Operations and the new lines specified
before and after the operations list will not be printed:

class "%Code%" {
.foreach item(Attributes, // Attributes\n,\n\n)
$DataType% %Code%
.1f (%$InitialValue%)
= %InitialvValue$%
.endif
.next (\n)
.foreach item(Operations, // Operations\n,\n\n)
$ReturnType% $Code% (...)
.next (\n)
<Source>

}

Result:

class "C1" {// Attributes
int al = 10
int a2
int a3 = 5
int a4
<Source>

}

1 Note

To print a blank space between the curly brace and the string // Attributes, you must enclose the head string in dou-
ble-quotes:

.foreach item(Attributes," // Attributes\n",\n)

5.5 Conditional Blocks

Place text containing a variable between square brackets to have it appear only if the variable resolves to a non-
null value.

You can also use a form similar to C and Java ternary expressions to print a string if the variable is true or not null:
[<variable> ? <ifNotNull>]
You can optionally include a string to print if the variable is evaluated to false, null, or the empty string:

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 273

[<variable> ? <ifNotNull> :<ifNull>]

Table 161:

Attribute %Code%[= %$InitialValue%];
Result:

Attribute Al =0;
Attribute A2 =100;
Attribute A3;
Attribute A4 =10;

The class %$Name$% 1is [%$Abstract%$?Abstract:Concrete].
Result if the Abstract property is selected:

The class myClass is Abstract.
Result if the Abstract property is not selected:

The class myClass is Concrete.

1 Note

You can also test the nullity of variables with the . i f macro (see .if Macro [page 298]). The following code
tests whether a Comment has been entered for the object and either prints the comment or a warning:

.if (%$Comment$%)

Documentation:

$Comment$

.else

'l No Documentation is defined for this table.
.endif (\n)

5.6 Accessing Global Variables

You can insert information such as your user name and the current date with global variables.

Table 162:
Name Description
SActiveModel% (object) Returns the UID of the model. Use $ActiveModel . Name% to obtain the name of
the model.
sGenOptions% (struct) Returns the model generation options.

Customizing and Extending PowerDesigner
274 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

Name Description
sPreviewMode’ (boolean) Returns t rue in the Preview tab, false when generated to a file.
sCurrentDate% (string) Returns the current system date and time formatted using local settings.
sCurrentUser% (string) Returns the current user login.
$NewUUID% (string) Returns a new universally unique identifier.

Table 163:

This file was generated from $%ActiveModel.Name$% by $CurrentUser% on $CurrentDate%.
Result:

This file was generated from My Model by jsmith on Tuesday, November 06, 2012
4:06:41 PM.

5.7 GTL Operators

GTL supports standard arithmetic and logical operators along with some advanced template operators.

The following standard arithmetical and logical operators are supported, where <x> and <y> can be numbers or
templates resolving to numbers:

Table 164:
Operator Description
= Assignment operator.
==and != Equal to and not equal to operators.
>and < Greater than and less than operators.
>=and <= Greater than or equal to and less than or equal to operators.
&&and | | Logical AND and logical OR operators.
S+ (<x>,<y>) % Addition operator.
S=(<x>,<y>) % Subtraction operator.
Sr(<x>,<y>) % Multiplication operator.
S/ (<x>,<y>) % Division operator.
$& (<x>,<y>) % Logical bitfield and operator

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 275

In this example, the template in the left column produces the output on the right:

Table 165:

Template ’ Results
Base number= SNumber$ Base number= 4
Number+1= %+ (Number, 1) % Number+1= 5
Number-1= %= (Number, 1) % Number-1= 3
Number*2= $* (Number, 2) % Number*2= 8
Number/2= %/ (Number, 2) % Number/2= 2
Numberé&l= %& (Number, 1) % Numberé&l= 0

The following advanced template operators are also supported:
Table 166:

Operator Description

Dereferencing operator - Corresponds to a double evaluation, returning a template instead of text, using
the syntax:

$*<template> [(<Pl,P2...>)]%

For information about template parameters, see Passing Parameters to a Template [page 283].

In the following example, a local variable is returned normally and in a dereferenced form:

t value (C, Code)

Code
%Code%

! Power evaluation operator - Evaluates the results of the evaluation of the variable as a template.

In the following example, a local variable is returned normally and in a power-evaluated form:
.set value (C, %$%MyAttribute%%)
C%

1C%

o° o

Result:

SMyAttribute$
Red

The ! operator may be applied any number of times. For example:
$1ts

This outputs the results of the evaluation of the evaluation of the evaluation of template t.

Customizing and Extending PowerDesigner
276 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

Operator Description

? Existence operator - Tests whether a template, local variable, or property is present, and returns false
if itis not.

For example:

.set value (myVariable, 20, new)
SmyVariable?%

.unset (myVariable)
SmyVariable?$%

Result:

true
false

+ Visibility operator - Tests whether an object property is visible in the interface, and returns falseifitis

not.

For example, to test if the Type field is displayed in the General tab of a database property sheetin a
DMM (meaning that a Replication Server® extension file is attached to the model), enter the following:

%Database.Type+%

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 277

5.8 Translation Scope

The initial scope of a template is always the metaclass on which it is defined. All standard and extended attributes,
collections, and templates defined on the active object metaclass and its parents are visible, but only one object is
active at any given time.

Table 167:

The following template is applied to a package P1, which contains a class C1, which contains operations O1 and 02, which
each contain parameters P1 and P2. The scope changes, affecting the value of the $Name% variable, as each collection is
traversed. The Outer keyword is used to return temporarily to previous scopes:

SName%
.foreach item(Classes)
\n\t*$Name% in %Outer.Name$%
.foreach item(Operations)
\n\t*%Name% in %Outer.Name$% in %Outer.Outer.Name$
.foreach item(Parameters)
\n\t\t*%Name% in %Outer.Name% in %Outer.Outer.Name% in
%Outer.Outer.Outer.Name$
.next
.next
.next

Result:

Pl

*Cl in P1

*01 in C1 in P1
*P1 in 01 in Cl1 in P1
*P2 in Ol in Cl1 in P1

*02 in Cl1 in P1
*P1l in 02 in C1 in P1
*P2 in 02 in Cl in P1

The Outer scope is restored when you leave a . foreach item block. Nested scopes form a hierarchy that can be viewed
as a tree, with the top level scope being the root. Use Parent instead of Outer to climb above the scope of the original ob-
ject. For example, nothing will be output if the following template is applied to the parameter P1:

%$Name% in %$Outer.Name$% in %Outer.Outer.Name$%
However, this template will produce output:
%Name% in %$Parent.Name% in %Parent.Parent.Name$%

Result:

P1 in Ol in C1

5.9 Shortcut Translation

Shortcuts are dereferenced during translation, so that the scope of the target object replaces the scope of the
shortcut. This is different from VB Script where shortcut translation retrieves the shortcut itself. You can use the

Customizing and Extending PowerDesigner
278 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

$IsShortcut$ variable to test whether an object is a shortcut, and the shortcut keyword to access the
properties of the shortcut itself.

Table 168:

Template

In this example, the template is applied to an OOM package P1 containing two classes and two shortcuts to classes in P2:

.foreach item(Classes)
\n*Class %Code% [%IsShortcut% ? From package %$Package.Name% : Local Object]
.next

Result:

*Class Cl1 Local Object
*Class C2 Local Object
*Class C3 From package P2
*Class C4 From package P2

1 Note

If your model contains shortcuts to objects in another model that is not open, a dialog box invites you to open
the target model. You can use the .set interactive mode macro to change this behavior
(see .set_interactive_mode Macro [page 302]).

5.10 Escape Sequences

GTL supports a number of escape sequences to simplify the layout of your templates and generated files, and to
make reserved characters accessible.

The following escape sequences can be used inside templates:

Table 169:
\n New line. For examples of using new lines in macro blocks, see Controlling Line Breaks in
Head and Tail Strings [page 273].
\t Tab
\\ Backslash
\ at end of line Continuation character (ignores the new line)
. at beginning of line Comment. Ignores the line.
.. at beginning of line Dot character (to generate a macro).
%% Percent character.

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 279

5.11 Calling Templates

You can call a template from a generated file or from another template by entering its name surrounded by
percentage signs. Object properties, collections, and local and global variables are called in the same way. At
generation time, a template call is replaced by the template content, which is then resolved to its final textual
value.

Examples:

® 3Name$% - Calls the object's Name property
® myTemplate% - Calls the $myTemplate$ template
® 3CurrentDate% - Calls the $CurrentDate% global variable (see Accessing Global Variables [page 2747)

Breaking templates into concise units and calling them at generation time helps with readability and reuse. For
example, you can define a commonly-used condition in one template and reference it in multiple other templates:

Table 170:

The $isInner% template is defined as:
.bool (%ContainerClassifier%!=null)
The $QualifiedCode% template calls the $isInner% template to test if the class is an inner class:

.if (%$isInner%)
%ContainerClassifier.QualifiedCode%: :%Code%
.else
%Code%
.endif

Result:
C2::C1

The $QualifiedCode% template is applied to the C1 class, which is an inner class to C2.

5.11.1 Inheritance and Polymorphism

Templates are defined on a particular metaclass in a language definition file or extension and are inherited by and
available to the children of the metaclass. For example, a template defined on the Classifier metaclass is available
to templates or generated files defined on the Class and Interface metaclasses.

GTL supports the following OO concepts as part of inheritance:

e Polymorphism - The choice of the template to be evaluated is made at translation-time. A template defined on
a classifier can access templates defined on its children (class, interface). In the following example, the
content of $definition% depends on whether a class or an interface is being processed:

Customizing and Extending PowerDesigner
280 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

[1 classifier

SOurce
Value = %5 definition®s
[class

definition

[Interface
definition

e Template overriding - A template defined on a given metaclass can be overridden by a template of the same
name defined on a child class. In the following example the template defined on the Classifier metaclass is
overridden by the one defined on the Class metaclass:

1 Profile
[classifier
1 Tenplates

isabstract
Value = fal=e
[class

[Templates
isabstract
Walues = true

You can view the overridden parent by right-clicking the child template and selecting Go to Super-Definition.
You can specify the use of the parent template by prefixing the template call with the : : qualifying operator.
Forexample: $Classifier: :isAbstract$.

e Template overloading - You can overload your template definitions and test for different conditions.
Templates can also be defined under criteria (see Criteria (Profile) [page 47]) or stereotypes (see
Stereotypes (Profile) [page 43]), and the corresponding conditions are combined. At translation-time, each
condition is evaluated and the appropriate template (or, in the event of no match, the default template) is
applied. For example:

full-template—-name = {syntaxl} <template-name> |
{syntaxs} <template-name>'<<' stereotype '>>! |
{syntaxi} <tewmplate-name>'-<' <simple-condition> '=!

temp late—-narme = <text>

You can define the same template multiple times in the hierarchy of a language definition file and extensions files,
and PowerDesigner will resolve it using inheritance rules. For example, the myLang OOM language definition file

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 281

and the myExtension extension file each contain a template $t% defined on each of the Classifier and Class
metaclasses:

Table 171:
myLang Language Definition File myExtension Extension File
e (Classifier: e (Classifier:
o myFile generated file o myOtherFile generated file
o %t%template o %t%template
e (Class: e (lass:
o %t%template o $t%template

The Class and Interface metaclasses both inherit from the Classifier metaclass, and each will generate a
myFile and amyOtherFile.

The following template calls are possible inmyLang/Classifier/myFile (which cannot access the templatesin

myExtension):

Table 172:
Template Call in myFile Template Called

%S or myLang/Class/t

smyLang: : t%

4Classifier::t%or myLang/Classifier/t

%myLang: :Classifier::t%

The following template calls are possible in myExtension/Classifier/myOtherFile (which can access both
its own templates and those in myLang):

Table 173:
Template Call in myOtherFile ’ Template Called
2 £% or myExtension/Class/t

%myExtension: :t%

sClassifier: :t%or myExtension/Classifier/t

$myExtension: :Classifier::t$%

$myLang: : t% or myLang/Class/t
%myLang: :Class::t%
smyLang: :Classifier: :t% myLang/Classifier/t

1 Note

For an extension file to reach templates defined in a language definition file, the Complement language
generation property in the extension must be selected (see Extension File Properties [page 21]).

Customizing and Extending PowerDesigner
282 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

5.11.2 Passing Parameters to a Template

You can pass parameters to a template, using the syntax:st (p1,p2...) %.

Parameter values cannot contain any % characters (you cannot pass a template), and are separated by commas.
They are retrieved in the template using local variables with the names @1, @2,

Table 174:

The following template call:

SmyTemplate (fine, sunny,24,12)%
calls $myTemplate%:

The weather today is %@1% and %@2%, with a high of %@3% and a low of %@4%.
Result:

The weather today is fine and sunny, with a high of 24 and a low of 12.

The template $Attributes% is defined as follows:

.foreach item(Attributes)
.if (%Visibility$ == %Q@1%)
$DataType% %Code%

.endif

.next (\n)

The template $AttributeList% calls $Attributes$ three times, passing a different visibility value each time to loop
over only the attributes that have this visibility:

Class "%Code%" attributes:
// Public

%$attributes (+) %

// Protected
%attributes (#) %

// Private

%$attributes (-) %

Result:

Class "Cl1l" attributes
// Public

int height

int width

// Protected

int shape
// Private

int cost

int price

Customizing and Extending PowerDesigner

Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 283

5.11.3 Recursive Templates

A template can call itself, but such a template should contain some kind of criteria or scope change to avoid an
infinite loop.

Table 175:

Class C1 isinner to class C2, whichis in turninner to C3. The template $topContainerCode% tests whether the present
classifier is inner to another, and if so, calls itself on the container classifier to perfom the same test until it reaches a classifier
that is not inner, at which point it prints the code of the top container:

($isInner%)
%$ContainerClassifier.topContainerCode%

Result:

C3

5.12 GTL-Specific Metamodel Extensions

A number of calculated attributes and collections are provided as GTL-specific extensions to the metamodel.

The following calculated attributes are metamodel extensions specific to GTL:

Table 176:
Metaclass ‘ GTL-Specific Attributes
PdCommon.BaseObject e sSelected (boolean) - True if the object is part of the selection in the generation
dialog
e isShorctut (boolean) - True if the object was accessed by dereferencing a short-
cut
PdCommon.BaseModel e GenOptions (struct) - Gives access to user-defined generation options
PdOOM.* e ActualComment (string) - Cleaned—-up comment (with /**, /* */ and // re-
moved)
PdOOM.Association e RoleAMinMultiplicity (string)
e RoleAMaxMultiplicity (string)
e RoleBMinMultiplicity (string)
e RoleBMaxMultiplicity (string)

Customizing and Extending PowerDesigner
284 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

Metaclass ‘ GTL-Specific Attributes

PdOOM.Attribute e MinMultiplicity (string)

o MaxMultiplicity (string)

e Overridden (boolean)

e DataTypeModifierPrefix (string)
e DataTypeModifierSuffix (string)

e (@<tag>[Java-specific] (string) - Javadoc@<tag> extended attribute with addi-
tional formatting

PdOOM.Class e MinCardinality (string)

e MaxCardinality (string)

e SimpleTypeAttribute [XML-specific]

e @<tag> [Java-specific] (string) - Javadoc@<tag> extended attribute with addi-
tional formatting

PdOOM.Interface e (@<tag>[Java-specific] (string) - Javadoc@<tag> extended attribute with addi-
tional formatting

PdOOM.Operation e Declaringlnterface (object)

e (GetSetAttribute (object)

e QOverridden (boolean)

e ReturnTypeModifierPrefix (string)
e ReturnTypeModifierSuffix (string)

e @<tag> [Java-specific] (string) - Javadoc@<tag> extended attribute with addi-
tional formatting (especially for @throws, @exception, @params)

PdOOM.Parameter e DataTypeModifierPrefix (string)
e DataTypeModifierSuffix (string)

The following calculated collections are metamodel extensions specific to GTL:
Table 177:

Metaclass name Collection name

PdCommon.BaseModel Generated <metaclass-name> List - Collection of all objects of type <metaclass-
name> that are part of the selection in the generation dialog

PdCommon. BaseClassifierMapping Sourcelinks

PdCommon. BaseAssociationMapping Sourcelinks

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 285

5.13 GTL Macro Reference

GTL supports macros to express template logic, and to loop on object collections. Macro keywords are prefixed
by a . (dot) character, which must be the first non-blank character in the line, and you must respect the use of line
breaks in the macro syntax.

1 Note

Macro parameters can be delimited by double quotes, and this is required if the parameter value includes
commas, braces, leading or trailing blanks. The escape sequence for double quotes inside a parameter value is
\". When the macro parameters specify that a parameter is of type simple template, this means that it can
contain text, variables, and conditional blocks, but no macros. Parameters of type complex template can
additionally include macros.

The following macros are available:

e (Conditional and loop / iterative macros:

o

o

o

e}

o

.if Macro [page 298] - evaluates conditions.

foreach_item Macro [page 293] — iterates on object collections.
foreach_line Macro [page 295] - iterates on lines of a multi-line text block.
foreach_part Macro [page 296] — iterates on parts of a string.

.break Macro [page 288] - breaks a loop.

e Formatting and string manipulation macros:

o

o

o

o

o

.lowercase and .uppercase Macros [page 300] - change the case of a text block.

.convert_name and .convert_code Macros [page 289] - convert codes into names or names into codes.
.delete and .replace Macros [page 290] - perform operations on substrings.

.unique Macro [page 305] - filters redundant lines from a text block.

.block Macro [page 287] - adds a header and a footer to a text block.

® (Generation command macros - for use when writing GTL in the context of the execution of a generation
command:

o

o

o

o

o

e}

.vbscript Macro [page 305] - embed VB script code inside a template.
.execute_vbscript Macro [page 293] - launch vbscripts.

.execute_command Macro [page 292] - launch executables.

.abort_command Macro [page 287] - stop command execution.

.change_dir and .create_path Macros [page 289] - change directory or create a path.
log Macro [page 300] - write log messages.

e Miscellaneous macros:

o

o

o

[¢]

o

286

.set_object, .set_value, and .unset Macros [page 302] - create local objects or variables.
.comment and .// Macro [page 289] - inserts a comment in a template.

.object and .collection Macros [page 301] - returns a collection of objects based on the specified scope
and condition.

.object and .collection Macros [page 301] - return an object or collection based on the specified scope
and condition.

.bool Macro [page 288] - evaluates a condition.

.set_interactive_mode Macro [page 302] — defines whether the GTL execution must interact with the
user.

Customizing and Extending PowerDesigner

© 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

o .errorand .warning Macros [page 291]

5.13.1 .abort_command Macro

This macro stops a generation command.

Table 178:

.if % JAVACS

.execute_ command (%_JAVAC%, 3FileName%)
.else

.abort command
.endif

For information about generation commands, see Generation Category [page 132].

5.13.2 .block Macro

This macro wraps a block of output with a header and/or a footer, if the output is not empty.

.block [(<head>)]
<block-input>
.endblock|[(<tail>)]

The following parameters are available:

Table 179:

Parameter Description

<head> [optional] Generated only if <block-1input>is not empty.
Type: Simple template

<block-input> Specifies the text to output between the head and tail.
Type: Complex template

<tail> [optional] Generated only if <block-input> is not empty
Type: Simple template

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 287

Table 180:

Example ’ Result
.block () My comment is in bold!
%Comment$%

.endblock ()
1 Note

The tags would not be generated if no comment were
entered for a particular object.

5.13.3 .bool Macro

This macro returns true or false depending on the value of the condition specified.
.bool (<condition>)

The following parameters are available:

Table 181:

Parameter Description

<condition> Specifies the condition to be evaluated.

Type: Condition

Table 182:

Example Result

.bool (%.3:Code%= =ejb) true

5.13.4 .break Macro

This macro can be used to break out of . foreach loops.

Table 183:

.set value(hasMain, false, new)
.foreach item(Operations)

.if (%Code$% == main)
.set value(hasMain, true)
.break

.endif

.next

% hasMain%

Customizing and Extending PowerDesigner
288 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

5.13.5 .change_dir and .create_path Macros

These macros change the current directory or create the specified path as part of a generation command.
.change dir (<path>)
.create path (<path>)

The following parameters are available:

Table 184:

Parameter Description

<path> Specifies the directory to go to or to create.

Type: Simple template (escape sequences ignored)

Table 185:

Example ’ Result

Changes the path to write to to C: \ temp.
.change dir (C:\temp)

i Creates the new directory C: \temp\mydir.
.create path(C:\temp\mydir)

For information about generation commands, see Generation Category [page 132].

5.13.6 .comment and .// Macro

These macros are used to insert comments in a template. Lines starting with . // or . comment are ignored during
generation.

Table 186:

.// This is a comment
.comment This is also a comment

5.13.7 .convert_name and .convert_code Macros

These macros convert the object name to its code (or vice versa).

Use the following syntax to convert a name to a code:

.convert name (<expression>[,"<separator>"[,"<delimiters>"],<case>])

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 289

Use the following syntax to convert a code to a name:

.convert code

(<expression>|[, "<separator>"[,"<delimiters>"]1])

The following parameters are available:

Table 187:

Parameter Description

<expression> Specifies the text to be converted. For .convert_name, this is generally the $Name$% variable and may
include a suffix or prefix.
Type: Simple template

<separator> [optional] Character generated each time a separator declared in <delimiters> is found in the code
For example, "_" (underscore).
Type: Text

<delimiters> [optional] Specifies the different delimiters likely to exist in the input code or name, and which will be
replaced by <separator>. You can declare several separators, for example "_"and "-"
Type: Text

<case> [optional for . convert name only] Specifies the case into which to convert the code. You can
choose between:
e firstLowerWord - Firstwordinlowercase, first letters of subsequent words in uppercase
® FirstUpperChar -First character of all words in uppercase
® Jlower case -Allwordsinlowercase and separated by an underscore
® UPPER_CASE - All words in uppercase and separated by an underscore

5.13.8 .delete and .replace Macros

These macros delete or replace all instances of the given string in the text input.

.delete (<string>)
<block-input>

.enddelete

.replace (<string>,<new-string>)
<block-input>

.endreplace

Customizing and Extending PowerDesigner

290 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

The following parameters are available:

Table 188:
<string> Specifies the string to be deleted.
Type: Text
<new-string> [.replace only] Specifies the string with which to replace <string>
Type: Text
<block-input> Specifies the text to be parsed for instances of the <string> to delete or replace.
Type: Complex template

Table 189:

Examples ’ Result

.delete (Get) CustomerName
GetCustomerName
.enddelete

.replace (Get, Set) SetCustomerName
GetCustomerName
.endreplace

.replace(" ",) Customer Name

Customer Name
.endreplace

5.13.9 .error and .warning Macros

These macros are used to output errors and warnings during translation. Errors stop generation, while warnings
are purely informational and can be triggered when an inconsistency is detected while applying the template on a
particular object. The messages are displayed in both the object Preview tab and the Output window.

.€Xrror message

.warning message

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 291

The following parameters are available:

Table 190:

Parameter Description

<message> Specifies the text of the message.

Type: Simple template

Table 191:

.error no initial value supplied for attribute %Code% of class %$Parent.Code%

5.13.10 .execute_command Macro

This macro is launches executables as part of a generation command. If there is a failure for any reason
(executable not found or output sent to stderr), then command execution is stopped.

.execute command (<cmd> [,<args> [,<mode>]])

The following parameters are available:

Table 192:
Parameter Description
<cmd> Specifies the path to the executable
Type: Simple template (escape sequences ignored)
<args> [optional] Specifies arguments for the executable.
Type: Simple template (escape sequences ignored)
<mode> [optional] Specifies the execution mode.You can choose from:
® cmd ShellExecute -runs as anindependent process
e cmd PipeOutput - blocks until completion, and shows the executable output in the output
window
Table 193:

.execute command (notepad, filel.txt, cmd ShellExecute)

For information about generation commands, see Generation Category [page 132].

Customizing and Extending PowerDesigner
292 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

5.13.11 .execute_vbscript Macro

This macro is used to execute a VB script specified in a separate file as part of a generation command.
.execute vbscript (<vbs-file> [,<script-parameter>])

The following parameters are available:

Table 194:
Parameter Description
<vbs-file> Specifies the path to the VB script.

Type: Simple template (escape sequences ignored)

<script-parameter> | [optional] Passed to the script through the ScriptInputParameters global property.

Type: Simple template

Table 195:

.execute vbscript (C:\samples\vbs\login.vbs, %username%)

The result of the script is available in the ScriptResult global property (see Manipulating Models, Collections, and Objects
(Scripting) [page 3341]). The active object of the current translation scope can be accessed through the ActiveSelection
collectionas ActiveSelection.Item(0).

For information about generation commands, see Generation Category [page 132].

5.13.12 .foreach_item Macro

This macro iterates over a collection of sub-objects or related objects.

.foreach item (<collection> [,<head> [,<tail> [,<filter> [,<order>]111)
<output>
.next [(<separator>)]

The following parameters are available:

Table 196:
Parameter Description
<collection> Specifies the collection over which to iterate.
Type: Simple template
<head> [optional] Specifies text to be generated before the output, unless the collection is empty.
Type: Text

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 293

Parameter Description

<tail> [optional] Specifies text to be generated after the output, unless the collection is empty.
Type: Text

<filter> [optional] Specifies a filter to apply to the collection before iteration.
Type: Simple condition

<order> [optional] Specifies the order in which the collection will be iterated in the format:

$Iteml.<property>% <= $Item2.<property>%

When the comparison evaluates to true, $Ttem1% will be placed after $Ttem2%. By default, the col-
lection is ordered alphabetically by name.
Type: Simple condition

<output> Specifies the text to output for each item in the collection.
Type: Complex template

<separator> [optional] Specifies text to be generated between each instance of <output>.
Type: Text

1 Note

If parameter values contain commas, braces, or leading or trailing blanks, they must be delimited with double-
quotes. To escape double-quotes inside a parameter value, use \".

Table 197:
Simple list:
.foreach item(Attributes)
*$Code% (%DataType%) [= %$InitialValue%];
.next (\n)
Result:
*available (boolean) = true;

*actualCost (int);
*baseCost (int);
*color (String):;
*height (int) = 10;
*width (int) = 5;
*name (int);

Customizing and Extending PowerDesigner
294 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

I ————

With head and tail:

.foreach item(Attributes,Attributes:\n,\n\nEnd of Attribute List)

*$Code% (%$DataType%) [= $InitialValue$];
.next (\n)
Result:
Attributes:
*available (boolean) = true;

*actualCost (int);
*baseCost (int);
*color (String);
*height (int) = 10;
*width (int) = 5;
*name (int) ;

End of Attribute List

With filter:
.foreach item(Attributes,,,%.1:Code%==a)
*%Code% (%DataType%) [= $InitialValue%];
.next (\n)

Result:

*available (boolean) = true;
*actualCost (int);

With reverse alphabetical ordering:

.foreach item(Attributes,,,, %Iteml.Code% <= %Item2.Code%)
*$Code% (%$DataType%) [= $InitialValue$%];

.next (\n)
Result:
*width (int) = 5;
*name (int);
*height (int) = 10;

*color (String);

*baseCost (int);

*available (boolean) = true;
*actualCost (int);

5.13.13 .foreach_line Macro

This macro iterates over the lines of the multiline block of text using the special $CurrentLine% local variable.

.foreach line (<input> [,<head> [,<tail>]])
<output>
.next [(<separator>)]

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 295

The following parameters are available:

Table 198:

<input> Specifies the text over which to iterate.
Type: Simple template

<head> [optional] Specifies text to be generated before the output, unless there is no output.
Type: Text

<tail> [optional] Specifies text to be generated after the output, unless there is no output.
Type: Text

<output> Specifies the text to output for each line in the input.
Type: Complex template

<separator> [optional] Specifies text to be generated between each line of <output>
Type: Text

Table 199:

.foreach line (%Comment%,"/**\n","\n*/")
* %CurrentLine$%
.next ("\n")

Result:

/*k*

* This is my comment.

* It is a Java style documentation comment.
* It spans several lines.

*/

5.13.14 .foreach_part Macro

This macro iterates over the parts of a string divided by a delimiter using the special $CurrentPart$ local
variable.

.foreach part (<input> [,"<delimiter>" [,<head> [,<tail>]1])
<output>
.next|[(<separator>)]

Customizing and Extending PowerDesigner
296 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

The following parameters are available:

Table 200:
Parameter Description
<input> Specifies the text over which to iterate.
Type: Simple template
<delimiter> Specifies the sub-string that divides the input into parts. You can specify multiple characters includ-
ing ranges. For example [A-7] specifies that any capital letter acts as a delimiter.
By default, the delimiterissetto ' -, \t' (space, dash, underscore, comma, or tab).
1 Note
The delimiter must be surrounded by single quotes if it contains a space.
Type: Text
<head> [optional] Specifies text to be generated before the output, unless there is no output.
Type: Text
<tail> [optional] Specifies text to be generated after the output, unless there is no output.
Type: Text
<output> Specifies the text to output for each part in the input.
Type: Complex template
<separator> [optional] Specifies text to be generated between each part of <output>
Type: Text
For example:
Table 201:

This template is applied toMy class:

.foreach part (%Name%)
%.FU:CurrentPart$
.next

Result:

MyClass

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 297

This template is applied toMy class:

.foreach part (%Name%,' - ', tbl)
%.L:CurrentPart$%
.next ()

Result:

tbl my class

This template is applied toMyClass:

.foreach part (%Name%, [A-Z])
%.L:CurrentPart$%
.next (-)

Result:

my-class

5.13.15 .if Macro

This macro is used for conditional generation.

.1f[not] <condition>
<output>
[(.elsif[not] <condition>
<output>) *]
[.else
<output>]
.endif [(<tail>)]

Customizing and Extending PowerDesigner
298 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

The following parameters are available:

Table 202:
Parameter Description
<condition> Specifies the condition to evaluate, in the form:
<variable> [<operator> <comparison>]
Where <comparison>may be:
e Text, or asimple template
® trueorfalse
e nullornotnull
If no operator and condition are specified, the condition evaluates to true unless the value of the vari-
able is false, null, or the empty string.
If <variable>and <comparison> are not integers, the operators perform a string comparison that
takes into account embedded numbers. For example:
Class 10 > Class 2
You can chain conditions together using the and or oxr logical operators.
Type: Simple template
<output> Specifies the output if the condition is true.
Type: Complex template
<tail> [optional] Specifies the text to be generated after the output, unless the output is empty.
Type: Text
Table 203:
Simple test:

.if %$Abstract$%
This class is abstract.
.endif

Result (if the Abstract property is selected):

This class is abstract.

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 299

I —
With two conditions and an . else clause:
.if (%Abstract%$==false) && (%Visibility%=="+")
This class is public and concrete.
.else

This is not a public, concrete class.
.endif

Result (if the Abstract property is not selected and the Visibility property is set to Public):

This class is public and concrete.

Withan .elseif clause:

.if (%Abstract%$==false) && (%Visibility%=="+")
This class is public and concrete.
.elsif (%Visibility%=="+")
This class is public.
.else
This is not a public, concrete class.
.endif

5.13.16 .log Macro

This macro logs a message to the Output window Generation tab as part of a generation command.

.log <message>

Table 204

.log undefined environment variable: JAVAC

For information about generation commands, see Generation Category [page 132].

5.13.17 .lowercase and .uppercase Macros

These macros convert text blocks to the specified case.

.lowercase
<block-input>
.endlowercase

.uppercase
<block-input>
.enduppercase

Customizing and Extending PowerDesigner
300 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

The following parameters are available:

Table 205:

Parameter Description

<block-input> Specifies the text to convert.

Type: Complex template

Table 206:
Example ’ Result
Applied to
.lowercase
scomments This is my comment.
.endlowercase

Produces:

this is my comment.

5.13.18 .object and .collection Macros

These macro return a single object OID or a collection of objects as a concatenation of semi-colon terminated
OIDs, and are generally used to create templates returning objects for use by other templates.

.collection (<scope> [,<filter>])
.object (<scope> [,<filter>])

The following parameters are available:

Table 207:
Parameter Description
<scope> Specifies the collection over which to iterate.
Type: simple-template returning a collection scope
<filter> [optional] Specifies a filter condition to filter the collection.
Type: simple-template

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 301

Table 208:

.object (Attributes, (%.1l:Code%$>= a) and (%$.1:Code% <= e))
Result:

C73C03B7-CD73-466A-B323-0B90B67E82FC

.collection (Attributes, (%.1:Code%>= a) and (%.1:Code% <= e))

Result:

C73C03B7-CD73-466A-B323-0B90B67E82FC; 77TE3F55C—
CF24-440F-84E7-5AA7B3399C00;F369CD8C-0C16-4896-9C2D-0CD2F80D6980; 00ADD959-0705-4061
-BF77-BB1914EDC018;

5.13.19 .set_interactive_mode Macro

This macro is used to define if the GTL execution must interact with the user or not.
.set_interactive mode (<mode>)

The following parameters are available:

Table 209:
Parameter Description
<mode> Specifies the level of interaction required. You can choose between:

® im Batch - Suppresses dialog boxes and always uses default values. For example, if your
model contains external shortcuts and the target model for the shortcuts is closed, this mode
will automatically open the model without user interaction.

® im Dialog - Displays information and confirmation dialog boxes that require user interaction
for the execution to keep running.

® im Abort - Suppresses dialog boxes and aborts execution if a dialog is encountered.

5.13.20 .set_object, .set_value, and .unset Macros

These macros are used to define a local variable of object (local object) or value type or to unset them.

Use the following syntax to create a local object:

.set object ([<scope>.] <name> [,<object-ref> [,<mode>]])

Customizing and Extending PowerDesigner
302 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

Use the following syntax to create a local variable:

.set value

(

[<scope>.] <name>, <value> [,<mode>] [,<unescape>])

Use the following syntax to remove a local object or variable:

.unset ([<scope>.] <name>)

The following parameters are available:

Table 210:
Parameter Description
<scope> [optional] Specifies the qualifying scope. If no scope is set, then the scope is the object with the cur-
rent scope. Use the this keyword to explicitly give a scope of the current object, or Parent to give
a scope of the parent object.
Type: Simple-template returning an object or a collection scope
<name> Specifies the name of the object or variable, which you can reference elsewhere in the template in

the form of $name%.

Type: Simple-template

<object-ref>

[.set_object only - optional] Specifies an object reference. If no reference is specified or an empty
string is given, the variable is a reference to the active object in the current translation scope.

Type: [<scope>.]<object-scope>]

<value> [.set_value only] Specifies the value to give to the variable.
Type: Simple template (escape sequences ignored)
<mode> [optional] Specifies the mode of creation. You can choose between:
® new - Forces the (re)-definition of the variable in the current scope. Recommended when a vari-
able with the same name may already be defined in a previous scope.
e update — [default] If a variable with the same name already exists, update the existing variable.
Otherwise define a new one.
e newifundef - Define the variable in the current scope if it has not been defined in an outer scope.
Otherwise do nothing.
<unescape> [.set_value only - optional] Specifies to interpret escaped characters such as \n in the supplied
value. By default, such characters are uninterpreted.
Examples:

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 303

Table 211:

.set object (Attributel, Attributes.First)
.set value (FirstAttributeCode, %Attributes.First.Code%)
$FirstAttributeCode% (OID: $%$Attributel%)

Result:

al (OID: 63442F85-48DF-42C8-92C1-0591F5D34525)

.set value(this.key, %Code%-%0bjectID%)
Result:

Cl1-40D8F396-EE29-4B7B-8C78-E5A0C5A23325

.set value (i, 1, new)
29729
517%

.unset (1)
%$12%

Result:

true
false

The first call to $1 2% outputs t rue as the variable i is defined, and the second outputs false, because it has been unset.

.set_value (oneline, "linel\nline2")

.set_value (twolines,"line3\nline4",, unescape)
%oneline%

$twolines$

Result:

linel\nline2
line3
line4

1 Note
You can use the dereferencing operator, * (see GTL Operators [page 275]), to convert the value of a variable

set with the . set _value macro to a template name. For example, the following code is equivalent to $Code%..:

.set _value (i, Code)

$*1%

Customizing and Extending PowerDesigner
304 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

5.13.21 .unique Macro

This macro outputs a block in which each line of the text generated is unique, and is often used for calculating
imports, includes, typedefs, or forward declarations in languages such as Java, C++ or C#.

.unique
<block-input>
.endunique| (<tail>)]

The following parameters are available:

Table 212:
Parameter Description
<block-input> Specifies the text block to be processed.
Type: Complex template
<tail> [optional] Specifies text to be generated after the output, unless the collection is empty.
Type: Text
Table 213:

.unique
import java.util.*;
import java.lang.String;
Simports%

.endunique

5.13.22 .vbscript Macro

This macro is used to embed VBScript code inside a template as part of a generation command. The result of the
script is available as the ScriptResult array

.vbscript [(<script-param-list>)]
<block-input>
.endvbscript [(<tail>)]

The following parameters are available:

Table 214:
Parameter Description
<script-param- Specifies the parameters to pass to the script through the ScriptInputArray table.
list>

Type: List of simple-template arguments separated by commas

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 305

Parameter Description

<block-input> Specifies theVBscript to run
Type: Text

<tail> Appended to the output, if there is one
Type: Text

Table 215:

This simple script accepts the two words hello and world as input parameters, and returns them as a single string with a
space in between them:

.vbscript (hello, world)
ScriptResult = ScriptInputArray(0) + " " + ScriptInputArray(l)
.endvbscript

Result:

hello world

Customizing and Extending PowerDesigner
306 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

__

This script accepts an attribute code, reviews it against all the attribute codes in the current model, and appends a 1 to it if it
matches any other code:

.set value(_code, %@1%, new)
.vbscript (%_code%)

Dim attrCode
attrCode = ScriptInputArray(0)

While (attrFound (attrCode))
attrCode = attrCode + "1"
Wend

Function attrFound (attrCode)
Dim found, attr
found = False
For Each attr in ActiveSelection.Item(0) .Attributes
If attr.Code = attrCode Then
found = True
Exit For
End If
Next

For Each attr in ActiveSelection.Item(0).InheritedAttributes
If attr.Code = attrCode Then
found = True
Exit For
End If
Next
attrFound = found
End Function

ScriptResult = attrCode
.endvbscript

1 Note

The active object of the current translation scope is accessed as ActiveSelection.Item (0) (see Manipulating Mod-
els, Collections, and Objects (Scripting) [page 334]).

For information about generation commands, see Generation Category [page 132].

5.14 GTL Syntax and Translation Errors

Error messages stop the generation of the file in which errors have been found, these errors are displayed in the
Preview tab of the corresponding object property sheet.

Error messages have the following format:

target::catg-path full-template-name (line-number)
active-object-metaclass active-object-code) :
error-type error-message

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 307

You may encounter the following syntax errors:

Table 216:
condition parsing error Syntax error in a boolean expression
expecting .endif Add an .endif or .1if (see.if Macro [page 298]).

.else with no matching .if

.endif with no matching .if

expecting .next Add an appropriate .next or . foreach to the collection block (for

next with no matching foreach example, see .foreach_item Macro [page 293]).

expecting .end%s Add an appropriate . end to the macro block (for example,
see .unique Macro [page 305]).

.end%s with no matching .%s Add an appropriate .<macro> to the . end<macro> (for example,

see .vbscript Macro [page 305]).

missing or mismatched parentheses Correct any mismatched parentheses.
unexpected parameters: <extra-params> Remove any unnecessary parameters
unknown macro Replace with a valid macro (see GTL Macro Reference [page 286]).
.execute_command incorrect syntax The correct syntax is displayed in the Preview tab, or in the Output

window (see .execute_command Macro [page 292]).

Change_dir incorrect syntax See .change_dir and .create_path Macros [page 289].

convert_name incorrect syntax See .convert_name and .convert_code Macros [page 289].

convert_code incorrect syntax

set_object incorrect syntax See .set_object, .set_value, and .unset Macros [page 302].

set_value incorrect syntax

execute_vbscript incorrect syntax See .execute_vbscript Macro [page 293].

Translation errors are evaluation errors on a variable when evaluating a template:

Table 217:
Translation error message Description and correction
unresolved collection: <collection> Unknown collection (see Accessing Collections of Sub-Objects or Re-
lated Objects [page 270])).

Customizing and Extending PowerDesigner
308 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Customizing Generation with GTL

Translation error message Description and correction

unresolved member: <member> Unknown member, null object member, or expecting a string instead

) of an object (see Extracting Object Properties [page 269]).
null object

expecting object variable: <object>

no outer scope Invalid use of the Outer keyword (see Translation Scope [page
278]).

VBScript execution error VB script error (see .vbscript Macro [page 305]).

Deadlock detected Deadlock due to an infinite loop.

Customizing and Extending PowerDesigner
Customizing Generation with GTL © 2016 SAP SE or an SAP affiliate company. All rights reserved. 309

6 Translating Reports with Report Language

Files

When you create a report, you select a report language, which contains all the framing text used in the generation
of the report for the selected language, such as report section titles, types of model objects, and their properties.
PowerDesigner ships with support for English (default), French, and simplified and traditional Chinese. You can
edit these files, or use them as the basis for creating your own files for translations into other languages.

Report language files have an .xrl extension and are stored in <install dir>/Resource Files/Report

Languages. 10 view the list of report languages, select

Tools

Resources » Report Languages 4. For

information about the tools available in resource file lists, see PowerDesigner Resource Files [page 9].

In the following example, Entity Card, Entity Description, and Entity Annotation are shown in English and French as
they will appear in the Report items pane:

Ef Project Management (CDM), Report - CDM report [(O] x|
Evailable items Shawe All ltems | Fepart items

-4 Data ltem

=-AJ) Entity

----- ==] Entity Card

----- [Entity Description

..... ‘_] Entity &nnotation
Entity Package Options

[M Related Diagram

;I @ Section 1
SRMEE rtity -

i==] Entity Card - Card af entity %ITEM
,_] Entity Description - Description of entity ZITEME
------ ,_] Entity Annotation - Annaotation of entity ZITERM %

- List of Related Diagrams of Entity

[E] Project Management (CDM), Report - CDM Report H=] B3
tIS: c:: Ehltlf ir:tllle; Evadable itemsz Show &1l ltems | Report items
izt of Entity Attac
Ligt of all Depende = Enhtél bt Card —I i Section_1
List of Objects in R = E”!PDa’ » SR W E ity - | : N
List of Relationship -5 nt!l-'l’ ESC"DF'D"' = Ent?t_l,J Card -.F|.c:he de Ien_tltg /eITEM/e_
List of Child Inkerits -] Entity Annatation |=] Entity Description - Description de 'entité 2| TEM
List of Parents of E Entity Package Options |- Entity Annatation - Annatation d lentité ZITEM %
.) -4 Ligt of Related Diagrams of Entity
Ligt of Diagrams co
List af Entity Attribu & Ll.éi Rielated Diagiam
-4t List of Child Ertities of Extity
[M Entity Attribute
. List of Entity Attached Rules
-~ Ligt of Entity [dentif . .
&1-{[) Entity [dentifier Ligt of all Dependencies
R v T List of Objects in Related Diagrams of Entity
List of Relationships of Entity
List of Child Inheritances of Entity
List of Parents of Entity
List of Diagrams containing the Entity
Ligt of Entity Attributes
{0 Eniy e | [T\ secon.1 /

The report language files use GTL templates (see Customizing Generation with GTL [page 268]) to factorize the
work of translation. Report Item Templates interact with your translations of the names of model objects and

Linguistic Variables (that handle syntactic peculiarities such as plural forms and definite articles) to automatically
generate all the textual elements in a report and dramatically reduce (by around 60%) the number of strings that
must be translated in order to render reports in a new language.

Customizing and Extending PowerDesigner

310 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Translating Reports with Report Language Files

For example the French report title Liste des données de 1l'entité MyEntity is automatically generated
as follows:

e the List - object collections report item template (see Profile/Report Item Templates Category [page 326]) is
translated as:

Liste des %$@Value% $ParentMetaClass.OFTHECLSSNAMES $%PARENTSS

in which the following variables are resolved:
o0 %$@Value$ - resolves to the object type of the metaclass (see Object Attributes Category [page 321]),

données.

O %ParentMetaClass.OFTHECLSSNAME$ $%%PARENT%% - resolves to the object type of the parent
metaclass, as generated by the OFTHECLSSNAME linguistic variable (see Profile/Linguistic Variables
Category [page 324]), 1'entité.

0 %%PARENT%% - resolves to the name of the specific object (see Object Attributes Category [page 321]),
MyEntity.

6.1 Opening a Report Language File

You can review and edit report language files in the Resource Editor.

Procedure

1. Select | Tools » Resources » Report ilLanguages to open the List of Report Languages, which lists all the
available .xrl files:

Il List of Report Languages
Fl oA D]

Frenich
Simplified Chinesze
Tradtional Chinese

Cloze I Help

Customizing and Extending PowerDesigner
Translating Reports with Report Language Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 311

Select a report language and click the Properties tool to open it in the Resource Editor.

1 Note

You can open the .xrl file attached to a report open in the Report Editor by selecting | Report » Report

Properties 4, and clicking the Edit Current Language tool beside the Language list. You can change the
report language by selecting another language in the list.

For more information about the tools available in the List of Report Languages, see PowerDesigner Resource
Files [page 9].

6.2 Creating a Report Language File for a New Language

You can translate reports and other text items used to generate PowerDesigner reports into a new language.

Procedure

o s W

10.

11.

312

Select | Tools # Resources » Report Languages 4 to open the List of Report Languages, which shows all the
available report language resource files.

Click the New tool, and enter the name that you want to appear in the List of Report Languages.

[optional] Select a report language in the Copy from list.

Click OK to open the new file in the Report Language Editor.

Open the Values Mapping category, and translate each of the keyword values (see Values Mapping Category
[page 314]).

Open the |+ Profile » Linguistic Variables J category to create the grammar rules necessary for the correct
evaluation of the report item templates (see Profile/Linguistic Variables Category [page 3241]).

Open the |+ Profile » Report Items Templates J category, and translate the various templates (see Profile/
Report Item Templates Category [page 326]). As you translate, you may discover additional linguistic
variables that you should create.

Click the All Classes tab to view a sortable list of all the metaclasses available in the PowerDesigner
metamodel (see All Classes Tab [page 323]). Translate each of the metaclass names.

. Click the All Attributes and Collections tab to view a sortable list of all the attributes and collections available in

the PowerDesigner metamodel (see All Attributes and Collections Tab [page 323]). Translate each of the
attribute and collection names.

Click the All Report Titles tab, and review the automatically generated report titles (see All Report Titles Tab
[page 320]). This tab may take several seconds to display.

Click the Save tool, and click OK to close the Report Language Editor. The report language file is now ready to
be attached to a report.

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Translating Reports with Report Language Files

6.3 Report Language File Properties

All report language files can be opened in the Resource Editor, and have the same basic category structure.

[Report Language Properties {For All Reports) I]

General |.-i'-.II Elassesl Al Attributes and Enllectinnsl 4| Report Titlesl

- . IEninsh Template j SR F-';Ef at'a}

@ Walues Mapping Harne; IEngIlsh Template _=|

@ Report Titles Code: |English Template IT

-0 Object Attibutes

=) Profile Eile narne: IE:'&F‘rn:ngram FilezhSpbazesPowerD esigner 154R
=103 Shared ey

ElE:] Templates
-1 Linguistic Y ariables ﬂ

la Feport ltem Templates

k. I Cancel Apply | Help |

The root node of each file contains the following properties:

Table 218:
Property Description
Name Specifies the name of the report language.
Code Specifies the code of the report language.
File Name [read-only] Specifies the path to the .xrl file.
Comment Specifies additional information about the report language.

Customizing and Extending PowerDesigner
Translating Reports with Report Language Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 313

6.3.1 Values Mapping Category

The Values Mapping category contains a list of keywords values (such as Undefined, Yes, False, or None) for

object properties displayed in cards, checks, and lists. You must enter a translation in the Value column for each
keyword in the Name column:

':} Report Language Properties (For All Reports) [_ O] =]
General |.-’-".II Elassesl &l Attributes and Eu:ulleu:tiu:unsl &l Bepart Titlesl
- IEnI:lIish Template:V alues Mappina\FormshStandard j 'Je, v - F-‘Ff ii}
E RptLang Template - :
EHE:I Values Mapping Hame: Standard
E@ Farms Comment; -
el el
EHEJ Lists
- Standard
=) Repart Titles
IEJ Commot Objects ;I
IEJ Repart Wizard Walle:
F-0) Conceptual Data kModel o
; Sa @ X | 4
-2 Logical Data Model 3.3 | & - |
IEJ ML Model M ame W alue ol
-2 Information Liquidity todel 1 <Embedded Filez> <Embedded Files>
@ Requirements Model 2 <Moner <AL
#-C3) Free Model 3 <UNDEF> <Maon défini
B Project 4 <Undefined: <Mon définix et
IEJ Enterprize Architecture Mod g EUnltmer'D EU nl:n':'wm ot
{2 Physical Data Model e e =
£-03 Physical Dala Mode 7 |FALSE FALIY —
'ﬁ Dlagram) THhiir A i
- L) Parkane | |FlE e 2] 2] |]
4] T b
k. I Cancel Apply | Help |
This category contains the following sub-categories:
Table 219:
Sub-category Description
Forms Contains a Standard mapping table for keywords of object properties in cards and checks, which
is available to all models. You have to provide translations for keywords values in the Value col-
umn.
Example: Embedded Files.
Lists Contains a Standard mapping table for keywords of object properties in lists, which is available to
all models. You have to provide translations for keywords values in the Value column.
Example: True.

You can create new mapping tables containing keywords values specific to particular types of model objects.

Customizing and Extending PowerDesigner
314 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Translating Reports with Report Language Files

6.3.1.1 Example: Creating a Mapping Table, and Attaching It
to a Specific Model Object

You can override the values in the Standard mapping tables for a specific model object by creating a new mapping
table, and attaching it to the object.

Context

In the following example, the DisplayMap mapping table is used to override the Standard mapping table for PDM
columns to provide custom values for the Displayed property, which controls the display of the selected columnin
the table symbol. This situation can be summarized as follows:

Table 220:

TRUE Displayed
FALSE Not Displayed
Procedure

1. Openthell Values Mapping ¥ Lists category 3.
2. Right-click the Lists category, select [New » Map Item J to create a new list, and open its property sheet.
3. Enter DisplayMap in the Name field, enter the following values in the Value list, and click Apply:

o Name: TRUE, Value: Displayed.
o Name:FALSE, Value: Not Displayed.

Customizing and Extending PowerDesigner
Translating Reports with Report Language Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 315

316

[Report Language Properties (For All Reports) Hi=l E3

General |.-'1'«II Ela3333| All Attributes and Eu:ulleu:tinnsl All Feport Titlesl

b - IEninshTempIate::Values M appinghLiztz\Dizplayk ap j \,.‘L b Lg - F-'ff 12}

French Template - -
EHii'l Values Mapping Hame: Dizplayid ap
hi'l Farms Comrnent; -
=405 Lists 7 j
EER ' izplayt ap
E5 Mandtap
5 PEMap

weii it Standard j
F-3 Report Titles Walle:
=0 Object Attributes = b
ﬁi‘] Carmmon Objects el | $ 2@ X | #
hi'l Requiremnents Model I ame Walue 2]
ﬁi‘l Canceptual Data Model 1 TRUE Dizplayed
-3 Free Model 2 FALSE Mot Dizplayed

ﬁﬁ Lagical D ata Model
ﬁi'l L Model
-0 Information Liquidity Modsl

=12 Physical Data Modsl &
= =T = SO WRRY R, SO _}I—I Tlflfl”l*li|1| I

1 |
0k I Cancel Apply | Help |

-
HCIEN

Right-click the Lists category, select |» New » Category ., name the category Physical Data Model, and click
Apply.

To complete the recreation of the PDM Object Attributes tree, right-click the new Physical Data Model
category, select [[» New » Map Item ., name the category Column, and click Apply.

Click the Name column to create a value and enter Displayed, which is the name of the PDM column attribute
(property).
Click the Value column and enter DisplayMap to specify the mapping table to use for that attribute.

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Translating Reports with Report Language Files

E\f Report Language Properties (For All Reports) H=] B3

General | Al Claszes I All Attributes and Collections I Al Repart Titles I

el i IEninshTempIate::\-"alues M appingiListssPhysical Data ModeColurnns j O R F.'E.f i'f'a}

E FptLang Template
E-) Yalues Mapping

‘4:| Forms Comment: -
=) Lists
Walue;
; L@ x|
#-IC3) Repart Titles 3| # a x|
Eluj Object Attnbutes Marme Walue iz
-0 Common Objects 1 Cizplayed Dizplayt ap
14:| Requirements tadel
- Conceptual Data Model Jhici
#420) Free Model I
14:| Logical Oata Model i
B0 XML Model i =
4| e |..|:_._._n:_..|:_..:.I|:;..|.J__|i|_| ilflfl*’l*lil‘l I PI

= Mame; Im

Ok I Cancel Apply | Help |

8. Click Apply to save your changes. When you generate a report, the Displayed property will be shown using the

specified values:

1 List of table columns

MNeame Code Displaped
id id Displayed
fiate fiathe Hot Displayed
size size Mot Displayed
supplier supplier Mot Displayed
uattity uattity Dizplayed
urdt_price utdt price Displayed

6.3.2 Report Titles Category

The Report Titles category contains translations for all the possible report titles that appear in the Available Items
pane in the Report Editor, those that are generated with the Report Wizard, and other miscellaneous text items.

Customizing and Extending PowerDesigner

Translating Reports with Report Language Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 317

:'-,-'- Report Language Properties {For All Reports) =]

General | All Claszes I All Attributes and Collections I Al Report Titles I

- - IEninsh Template::Report Tiles'\Physical D ata Model T able\Calumn's. = | W = | = 55 *2

=-5) Column ﬂ ;
#-) ExtendedSubObject Name: |Column card

IE <terdedSubObjects list J Comment: ﬂ

¢ Analysiz0bjects list
ninokation

¢ ArticleColurnng list

¢ AttachedR equirements lisk
ttachedRules list

: Book title j
CheckCaonstraintMame Yalue: IFiche de la caolonne de la table

¢ ChildviewR eferenceloins list
i ClientCheckE <preszzion
olurnn card

¢ Colurnn check,

ComputedE sprezsion

: Data lizt

¢ DataStructureColurnnzS ource

- ataStructureColurmnz T arget
PHER T N S P Y i
Kl | »

k. I Cancel Apply Help

This category contains the following sub-categories:
Table 221:

Sub-category Description

Common Objects Contains the text items available to all models. You must provide translations of these items here.

Example: HTMLNext provides the text for the Next button in an HTML report.

Report Wizard Contains the report titles generated with the Report Wizard. You must provide translations of these
items here.

Example: Short description title provides the text for a short description section when you generate a
report with the Report Wizard.

[Models] Contain the report titles and other text items available to each model. These are automatically gener-
ated, but you can override the default values.

Example: DataTransformationTasks list provides the text for the data transformation tasks list of a given
transformation process in the Data Movement Model.

By default (with the exception of the Common Objects and Report Wizard sub-categories) these translations are
automatically generated from the templates in the Profile category (see Profile/Report Item Templates Category

Customizing and Extending PowerDesigner
318 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Translating Reports with Report Language Files

[page 326]). You can override the automatically generated values by entering your own text in the Localized name
field, which will depress the User-Defined button to indicate that the value is no longer generated.

1 Note

The All Report Titles tab (see All Report Titles Tab [page 320]) displays the same translations shown in this
category in a simple, sortable list form. You may find it more convenient to check and, where appropriate, to
override generated translations on this tab.

6.3.2.1 Example: Translating the HTML Report Previous
Button

The HTML report Previous button is a common object available to all models, and located in the Common Objects
category. You must translate this text item manually along with the other items in this, and the Report Wizard
categories.

Procedure

1. Openthe |k Report Titles » Common Objects 3 category.

2. Clickthe HtmlPrevious entry to display its properties, and enter a translation in the Value box. The User-
Defined button is depressed to indicate that the value is no longer generated.

Customizing and Extending PowerDesigner
Translating Reports with Report Language Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 319

'-f\f Report Language Properties {For All Reports) Hi=] E3

General |.-i'-.II Elassesl &l Attributes and I:l:ullectil:unsl &l Bepart Titlesl

- i IENGZ:HEF‘DHTit|ES"-.|:DI'I'|IT|Dr'I Objects\HimlPrevious j B
----- [abe| Dromains list ;I ! i
----- labe| ExtendedCollection Conten Hame: nion
..... abe| ErtendedDependencies list Comment; =
----- lobe| Eutendedinfluences list

----- jabe| Ewtended|nverseCollection:
----- abe| Extendedlinks list
----- jabe| EwtendedObjects list

=

..... [abe| Files list ”
..... - Foater _I
..... [abe] Generatediodels list Walue: Précédent -

----- labe| GenerationOriging list
eader
HtmiH ome
brnlfd et
HtmlPrevious
----- abe b odel card
----- jabe| ObjectzinRelatedDiagrams

----- lobe| Packages list
akal Dlem =i il
| | 3

] I Cancel Apply Help

3. Click Apply to save your changes.

6.3.2.2 All Report Titles Tab

The Report Titles tab lists all the report titles and other miscellaneous text items available in the Report Titles
category on the General tab, but the flat structure makes it more convenient to work with.

Customizing and Extending PowerDesigner
320 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Translating Reports with Report Language Files

rff Report Language Properties (For All Reports)

Generall & Elassesl &)l Attributes and Collections Al Report Titles |

gl NI SR O WO

=] E3

Farent i arne Localized Mame il
19 Category ‘Tiagram’ ActivityFlow lizt Ligt of flows in diagram
20 Category ‘Aotar’ Actor card Card of actor ZITEMZE
21 Category ‘Aotar’ Actor card Card of actor ZITEMZE
22 Cateqgom ‘Tiagram’ Actar ligt Ligt of actars in diagram
23 Cateqgom 'Tiagram’ Actar ligt Ligt of actars in diagram
24 Categon Class' Actors izt Lizt of actars of the class EPARENT
25 Categon '|nterface’ Actors izt Lizt of actars of the interface ZPARENT %
28 Categom Datadgoreaation’ :AggregationCalurmns list Lizt of aggreqated colurmng of the data transfo
29 Categom WhetractDataT vpe't AIE stendedSubO bjects list Lizt of extended sub-objects of the abstract d.
a0 Cateqon AbetractDataT ype AlEstendedSubObjects list Lizt of extended sub-objects of the abstract d.
A Cateqon WhetractDataT ype AlEstendedSubObjects list Lizt of extended sub-objects of the abstract d.
32 Cateqon Action' AlExtendedSubObjects list Lizt of extended sub-objects of the action =P
33 Cateqon Action' AlExtendedSubObjects list Lizt of extended sub-objects of the action =P
34 Cateqony ‘Aotiviey' AlExtendedSubObjects list Lizt of extended sub-objects of the activity %F =
ia] Cateqon ‘ActivitgFlow' AlExtendedSubObjects list Lizt of extended sub-objects of the flow ZPAF =
36 Cateqon ‘Actor’ AlExtendedSubObjects list Lizt of extended sub-objects of the actor %P4 =
1] |

e

L

Cancel | Apply | Help

For each report listed in the Name column, you can review or override a translation in the Localized Name column.
You can sort the list to group similarly-named objects, and translate identical items together by selecting multiple

lines.

6.3.3 Object Attributes Category

The Object Attributes category contains all the metaclasses, collections and attributes available in the
PowerDesigner metamodel, organized in tree form:

Customizing and Extending PowerDesigner
Translating Reports with Report Language Files

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

321

':w-f Report Language Properties (For All Reports) [_ O]

General | All Claszes I All Attributes and Collections I Al Beport Titles I

- - IENG::EII::ie::t Attributeghnformation Liquidity M odel\ControlFlov j k.-k - [- 'f'ff a'f;_g
=12 Information Liquidity Model -] :
{EJ Article Marne: ControlFlov
ﬁ,’] ArticleColurmn Camment: o
-1 Comman Attributes

ﬁ,’] ControlFlow
ﬁ,’] Datadcoesslink
-0 DataCalculator

ﬁ,’] DataConnection ;I
ﬁ,’] D ataConnectionGroup

@ DataFilter Walue: Iflu:-c de contrile

ﬁ,’] D1 ataF low

#-2) Datalnput : 3 Ty R

: ﬁ? ==

ﬁ,’] Dratalookup ﬁ | i | % 53 ‘ X | 43 | ks

ﬁ,’] [atallutput Linguigtic % ariables I W alue

-2 DataluenE xecution = |CLSSHAMES flux de contrcle] |0

-0 DataStuctureColurnn COFTHECLSSHAME des flus de contrdle

ﬁ,’] DrataStructure oin

ﬁ,’] DrataStructureS orted Columt

o ie= nq;qT,q“ﬂ:H,mq;:H“Tﬂnl,_Ij F|#]+] 3] %]2]4] |
3

| I
0k, I Cancel | Apply | Help |

-
[m]4] |»

This category contains the following sub-categories:

Table 222:

Sub-category Description

[Models] Contain text items for metaclasses, collections and attributes available to each model, for
which you must provide translations.
Example: Action provides the text for an attribute of a process in the Business Process
Model.

Common Objects Contains text items for metaclasses, collections and attributes available to all models, for
which you must provide translations.
Example: Diagram provides the text for a diagram in any model.

For each item the name is given, and you must provide a translation in the Localized name field. This value is
retrieved by the templates you have specified in the Profile category to generate default report titles (see Report
Titles Category [page 317]).

For metaclasses only, the linguistic variables you have specified (see Profile/Linguistic Variables Category [page
3247) are listed along with the results of their application to the translations given in the Localized name field. If
necessary, you can override the automatically generated values by entering your own text in the Value column,
which will depress the User-Defined button to indicate that the value is no longer generated.

Customizing and Extending PowerDesigner
322 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Translating Reports with Report Language Files

6.3.3.1

All Classes

Tab

The All Classes tab lists all the metaclasses available in the Object Attributes category on the General tab but the
flat structure makes it more convenient to work with.

I‘_F‘,J! Report Language Properties {(For All Reports)

General All Claszes | Al Attributes and Collections I All Report Titles I

| % XA X

=] E3

Farent

I ame -

Localized Mame

1 Cateqon 'Physical Data Mod: dAbstractDataTwpe : abstract data tupe

2 Cateqon 'Physical Data Mod: dbstractD ataT ypedt: abstract data tupe al
3 Cateqon 'Physical Data Mod: dbstractD ataT wpePr: abstract data type pi
4 Cateqon Mernize Proceszs Mo Action achion

5 Category 'Object Oriented M {Action action

= Category 'Object Oriented M Activity activity

i Category 'Chject Oriented M ActivityFlow Floes

g

Category 'Object Oriented b L ActivityParameter activity parameter

Category Ohject Orented b i Annotation

12 Category kL kodel
13 Categon #hL kodel

annotation
annotation ikem

Annotation
Annotationl bem

14 Categon #hL odel Ay any

15 Categorny 'Infarmation Liguidit Article article

16 Categor Tnformation Liguidit: ArticleColurn article colurnn -
17 Categony 'Common Objects’ Artifact artéfact I
18 Categor Ohject Oriented M AzzemblyConnector | aszembly connectar >
4| e

] I Cancel Apply | Help |

For each metaclass listed in the Name column, you must enter a translation in the Localized Name column. You
can sort the list to group similarly-named objects, and translate identical items together by selecting multiple
lines.

6.3.3.2 All Attributes and Collections Tab

The All Attributes and Collections lists all the collections and attributes available in the Object Attributes category
on the General tab, but the flat structure makes it more convenient to work with.

Customizing and Extending PowerDesigner

Translating Reports with Report Language Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 323

I‘:‘g Report Language Properties (For All Reports)

Generall &l Classes Al Attributes and Collections |.-i'-.II Fieport Titlesl

ol NI SR Ol W

=] E3

Farent Mame | Localized Name -]
1211 |Lanouage Metaclazz Servici DataSchemalangu : Data Schema Lang
1212 |Lanouage Metaclass 'Servici DataSchemaText iData Schema Test
1213 |Lanouage Metaclass DataTi DataSaorts data Sorts
iy
1217 |Lanouaoe Metaclass 'BazeliDataSourcelogin i Loagin
1218 |Lanouaoe Metaclass 'BazeliDataSourcelogin i Loagin
1219 |Lanouage Metaclass 'BazeliDataSourcelogin i Loagin
1220 |Lanouaoe Metaclass 'BazeliDataSourcelogin i Loain
1221 |Lanouaoe Metaclass 'BazeliDataSourcelogin i Loain
1222 |Language Metaclaszz ‘BazeDiDataSourcelogin i Login
1223 |Language Metaclaszz ‘BazeDiDataSourcelogin i Login
1224 |Language Metaclaszz ‘BazeDiDataSourcelogine (Login
1225 |Language Metaclaszz ‘BazeDiDataSourcelogin i ldentifiant
1226 |Language Metaclaszz 'Datas iDataSourcelogine Login -
1227 |Language Metaclazz 'Datas iDataSourcelogine (i Login =
1228 |Language Metaclazz 'Datas iDataSourcelogine Login >
1| |

L=

Apply | Help |

For each attribute or collection listed in the Name column, you must enter a translation in the Localized Name
column. You can sort the list to group similarly-named objects, and translate identical items together by selecting
multiple lines.

6.3.4 Profile/Linguistic Variables Category

The Linguistic Variables category contains templates, which specify grammar rules to help build the report item

templates.

Examples of grammar rules include the plural form of a noun, and the correct definite article that must precede a
noun (see Profile/Report Item Templates Category [page 326]).

324 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Translating Reports with Report Language Files

E'v’ Report Language Properties (For All Reports) [_ O]

General | All Clazzes I All Attributes and Collechions I Al Report Titles I

- IEngIlshTempIate F'ru:uflle'xShared'RTemplates'&ngulstlcVarlableskELSSJ Ao - §

E FptLang Template =
-2 Walues Mapping
#1030 Report Titles B
uj Object Attributes T
=) Profile
=105 Shared

= A Templates !

Elﬂ Llngumtlc‘v"arlal:ules = - - d S | % 53 (18 | i | s €

Mame: |CLSSNAMES

E Bl

£

- @ OFTHE CLESNAME *Waluess
El 4 Repart ltem Templates
it Attribute - Object
Attribute - Sub object
Book Title - Object
Book Title - Sub ohje
Card - Object
Card - Sub object

Check - Object i
) I ety r“lm-ml,l (= Hh:n.llj 4 I I 4

k. I Cancel Apply | Help |

Specifying appropriate grammar rules for your language, and inserting them into your report item templates will
dramatically improve the quality of the automatic generation of your report titles. You can create as many
variables as your language requires.

Each linguistic variable and the result of its evaluation is displayed for each metaclass in the Object Attributes
category (see Object Attributes Category [page 321]).

The following are examples of grammar rules specified as linguistic variables to populate report item templates in
the French report language resource file:

e GENDER - Identifies as feminine a metaclass name %Value%, if it finishes with "e" and as masculine in all
other cases:

Lif (%.-1:@Value$ == e)
F

.else

M

.endif

For example: la table, la colonne, le trigger.

e CLSSNAMES - Creates a plural by adding "x" to the end of the metaclass name %Value%, if it finishes with
"eau" or "au" and adds "s" in all other cases:

.1if (%.-3:@Value% == eau) or (%.-2:Q@QValue% == au)

$Q@Value%x

Customizing and Extending PowerDesigner
Translating Reports with Report Language Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 325

.else
%Q@Value%s
.endif

For example: les tableaux, les tables, les entités.

e THECLSSNAME - Inserts the definite article before the metaclass name %Value% by inserting " I' ", if it
begins with a vowel, "le" if it is masculine, and "la" if not:

.if (%.1U:@Value% == A) or (%.1U:@Value% == E) or (%.1U:@Value% == I) or (%.
1U:@Value% == 0) or (%.1U:@Value% == U)
'$@Value$
.elsif (%GENDER% == M)
le %@Value%
.else
la %$@Value$
.endif

For example: I'association, le package, la table.

e OFTHECLSSNAME - Inserts the preposition "de" plus the definite article before the metaclass name %Value
%,if it begins with a vowel or if it is feminine, otherwise "du".

.if (%.1U:@Value% == A) or (%.1U:@Value% == E) or (%.1U:@Value% == I) or (%.
1U:@Value% == 0) or (%.1U:@Value% == U) or (%GENDER% == F)

de $THECLSSNAMES

.else

du %@Value%

.endif

For example: de la table, du package.

o OFCLSSNAME - Inserts the preposition " d' " before the metaclass name %Value%,, if it begins with a vowel,
otherwise "de".

.1f (%.1U:@Value$ == A) or (%.1U:@Value% == E) or (%.1U:@Value%$ == I) or (%.
1U:@Value% == 0) or (%.1U:@Value% == U)
'$Q@Value$
.else
de %@Value%
.endif

For example: d'association, de table.

6.3.5 Profile/Report Item Templates Category

The Report Item Templates category contains a set of templates that, in conjunction with the translations that you
will provide for metaclass, attribute and collection names, are evaluated to automatically generate all the possible
report titles for report items (book, list, card etc.)

Customizing and Extending PowerDesigner
326 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Translating Reports with Report Language Files

[El Report Language Properties {For All Reports) =] E3

General |.-i'-.II Elassesl &l Attibutes and Enllectinnsl &/l Feport Titlesl

- - | Englizh Template::ProfiletS hareds TemplatesyFepart ltem TemplatesiList - j (O R e

Book Title - Sub object
ook ILe - oub Ahiee il i ame: Ligt - Object collections
Card - Object

Card - Sub object Comrment: ﬂ

Check - Object
Check - Sub object
Ligt - Dependent Sub objects ;I
Lizt - Dependent objects
List - Diagrams containing the ¢ S H-d SR | & 53 3 | Ly | 3 @ Ln1,Col
Ligt - Global object mappings
Ligt - Global objects collections
List - Model collections:

t - Object collections

Liste de %[Value% de 1' %ParentMetaClass.@Valuei ;I

List - Object extended attribute
Lizt - Object mappings

Lizt - Objects in diagram

Ligt - Sub object collections
Ligt - Sub object extended attril

b atrix - Object o _ILI
B s § iR >
k. I Cancel Spply | Help |

You must provide translations for each template by entering your own text. Variables (such as $text%) must not
be translated.

For example the template syntax for the list of sub-objects contained within a collection belonging to an object is
the following:

List of %@Value$% of the %$ParentMetaClass.@Value% $$PARENTS%%

When this template is evaluated, the variable $@value% is resolved to the value of the localized name for the
object, $ParentMetaClass.@Value% is resolved to the value of the localized name for the parent of the object,
and $%PARENTS%% is resolved to the name for the parent of the object.

In this example, you translate this template as follows:

® Translate the non-variable items in the template.

e C(Create alinguistic variable named OFTHECLSSNAME to specify the grammar rule used in the template (see
Profile/Linguistic Variables Category [page 324]).

This template will be reused to create report titles for all the lists of sub-objects contained within a collection
belonging to an object.
1 Note

You cannot create or delete templates.

Customizing and Extending PowerDesigner
Translating Reports with Report Language Files © 2016 SAP SE or an SAP affiliate company. All rights reserved. 327

7 Scripting PowerDesigner

When working with large or multiple models, it can be tedious to perform repetitive tasks, such as modifying
objects using global rules, importing or generating new formats, or checking models. Such operations can be
automated through scripts.

You can access and modify any PowerDesigner object using Java, VBScript, C#, or many other languages. In this
chapter, we focus primarily on writing VBScript to execute in PowerDesigner's Edit/Run Script dialog, but you can
also call add-ins from PowerDesigner menus (see Launching Scripts and Add-Ins from Menus [page 361]) or
script the PowerDesigner application via OLE automation (see OLE Automation and Add-Ins [page 355]).

The following script illustrates the basic syntax of VBScript applied to manipulating PowerDesigner models and
objects, including:

® Declaration of local variable

e Assignment of value to a local variable (with the specific case of object)

e Condition operator: If Then/Else/End If

® |terationonalist: For Each/ Next

e Definition and call of a procedure: Sub

e Definition and call of a function: Function

e FError handling using On Error statements

' This is a VBScript comment.

Dim var ' Declaration of a local variable

var = 1 ' Value assignment for simple type

Set var = ActiveModel ' Value assignment for an object. ActiveModel is a
PowerDesigner global property

If not var is Nothing Then ' Condition on an object, testing if it is 'null'

Dim objt ' Declaration of another local variable
For Each objt In ActiveModel.Children ' Loop on the Children object collection
DescribeObject objt ' Procedure call with objt as a parameter (without

parentheses) . The procedure is defined below.

Next
Else

output "There is no active model" ' Output is a PowerDesigner procedure that
writes text to the Output window
End If
' This is a procedure - a method that does not return a value

Sub DescribeObject (objt)

Dim desc ' A variable declaration inside the procedure

desc = ComputeObjectLabel (objt) ' A function call with objt as parameter (with
parentheses) . The function is defined below.

' We retrieve the value returned by the function

in the variable desc

output desc ' Displays the object description in the output
End Sub
' This is a function - a method that returns a value
Function ComputeObjectLabel (objt)

Dim label ' Declare a local variable to store the object label
label = "" ' Initialize the label variable with a default value
If objt is nothing then
label = "There is no object"
ElseIf objt.IsShortcut () then ' IsShortcut is a PowerDesigner function available
on objects
label = objt.Name & " (shortcut)" ' Concatenation of two strings
Else

Customizing and Extending PowerDesigner
328 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

On Error Goto 0 ' Disables script execution abort on error
label = objt.Name ' Assigns the object's Name property to the local variable
On Error Resume Next ' Reactivates script execution error
End If
ComputeObjectLabel = label ' The value is returned by assigning an implicit
variable with same name than the function
End Function

1 Note

VBScript can also be used to create custom checks, event handlers, transformations, and methods in an
extension file (see Extension Files [page 18]) and embedded in or called from GTL templates
(see .execute_vbscript Macro [page 293] and .vbscript Macro [page 305]).

The examples in this chapter are intended to introduce the basic concepts and techniques for controlling
PowerDesigner by script. For complete documentation of the PowerDesigner metamodel, select |» Help
Metamodel Objects Help 3. For full documentation of VBScript, see the Microsoft MSDN site # .

7.1 Running Scripts in PowerDesigner

You can run VBScript scripts in your PowerDesigner client by selecting |» Tools » Execute Commands :to open
the Edit/Run Script dialog. Output from the script is printed to the Output window.

i Edit/Bun Script - read_models.vbs

HrF-SHIRA| 4 @BX| 9| p| @ Lnco

Option Explicit
ValidationMode = True
InteractiveMode = im Batch

' get the current active model
Dim mdl ' the current model
et mdl = ActiveModel
If (mdl Is Nothing) Then

MagEox "There iz no Active Model™
Elze

ListObjects(mdl) |-
End If

' Zub procedure to scan current package and print information on objec
"and call again the same sub procedure on all children pacakge
' aof the current package

Private Sub ListObjects(fldr)
output "Icarming T & £ldr.code _ILI
- -

Bun Cloze | Help |

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 329

http://help.sap.com/disclaimer?site=http://msdn.microsoft.com/en-us/library/t0aew7h6

The following tools are available on the Edit/Run Script dialog toolbar:

Table 223:

Tools

=N

Description

Editor Menu (+) - Contains the following commands:

® New (+) - Reinitializes the field by removing all the existing content.

e QOpen.. (+ @) - Replaces the content of the field with the content of the selected file.

® |nsert... (+) - Inserts the content of the selected file at the cursor.

e Save (+) - Saves the content of the field to the specified file.

e Save As... - Saves the content of the field to a new file.

e Select All (+) - Selects all the content of the field.

e find... (+) - Opens a dialog to search for text in the field.

e find Next... () - Finds the next occurence of the searched for text.

e Find Previous... (+) - Finds the previous occurence of the searched for text.

e Replace... (+) - Opens a dialog to replace text in the field.

e GoToline.. (+) - Opens a dialog to go to the specified line.

* Toggle Bookmark (ctrl| + [F2]) Inserts or removes a bookmark (a blue box) at the cursor position.
Note that bookmarks are not printable and are lost if you refresh the tab

e Next Bookmark() - Jumps to the next bookmark.

® Previous Bookmark ((shift| + [F2]) - Jumps to the previous bookmark.

Edit With (+) - Opens the previewed code in an external editor. Click the down arrow to select a

particular editor or Choose Program to specify a new editor. Editors specified here are added to the list of

editors available at |} Tools > General Options > Editors }

L]

Save (+) - Saves the content of the field to the specified file.

Print (+ E) - Prints the content of the field.

E2

Find (ctr1] + [F])- Opens a dialog to search for text.

=
&

]

Cut (+), Copy (+), and Paste (+) - Perform the standard clipboard ac-

tions.

X

Clear - Deletes the script in the dialog.

[9](e~]

Undo (+) and Redo (+) - Move backward or forward through edits.

Multiple levels of Undo and Redo are supported but , if you run a script that modifies objects in several mod-
els, you must use the Undo or Redo commands in each of the models called by the script.

330 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
Scripting PowerDesigner

Tools Description
|T| Run () - Runs the script. Output is printed to the Output window.

Result pane, and the cursor is set at the error position.

im Abort interactive mode (see .set_interactive_mode Macro [page 302]).

If a compilation error occurs, a message box is displayed, a brief error description appears in the dialog's

You can catch errors usingthe On Error Resume Next statement, unless the scriptis called in the

©

metaclass.

Find in Metamodel Objects Help (+) - Opens the PowerDesigner metamodel objects help file,
which provides detailed information about all the attributes, collections, and methods available for each

7.1.1 VBScript File Samples

PowerDesigner ships with a set of script samples, that you can use as a basis to create your own scripts, and

which are located in the vB Scripts folder of the PowerDesigner installation directory. These scripts are
intended to show you the range of tasks you can perform on PowerDesigner models using VBScript.

Caution

You should always make a backup copy of the sample script before making changes to it.

Model Scan Sample

The following script browses any model, looping through any packages and listing the objects contained in them:

Option Explicit ' Forces each variable to be declared

'before assignment

InteractiveMode = im Batch ' Supresses the display of dialogs
' get the current active model

Dim diag

Set diag = ActiveDiagram ' the current diagram

If (diag Is Nothing) Then

MsgBox "There is no Active Diagram"
Else

Dim fldr

Set Fldr = diag.Parent

ListObjects (fldr)
End If

' Sub procedure to scan current package and print information on
objects from current package and call again the same sub procedure
on all child packages
Private Sub ListObjects (fldr)

output "Scanning " & fldr.code

Dim obj ' running object

For Each obj In fldr.children

' Calling sub procedure to print out information on the object
DescribeObject obj
Next

Customizing and Extending PowerDesigner

Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved.

331

' go into the sub-packages

Dim f ' running folder
For Each f In fldr.Packages
'calling sub procedure to scan children package
ListObjects f
Next
End Sub
' Sub procedure to print information on current object in output
Private Sub DescribeObject (CurrentObject)
if CurrentObject.ClassName ="Association-Class link" then exit sub
'output "Found "+CurrentObject.ClassName

output "Found "+CurrentObject.ClassName+" """+CurrentObject.Name+""",

"+CurrentObject.Creator+" On "+Cstr (CurrentObject.CreationDate)
End Sub

Model Creation Sample

Created by

The following script creates a new OOM model, then creates a class with attributes and operations:

ValidationMode = True 'Forces PowerDesigner to validate

' actions and return errors in the event of a forbidden action
InteractiveMode = im Batch ' Supresses PowerDesigner dialogs

' Main function

' Create an OOM model with a class diagram

Dim Model

Set model = CreateModel (PAOOM.cls Model, "|Diagram=ClassDiagram")
model .Name = "Customer Management"

model.Code = "CustomerManagement"

' Get the class diagram

Dim diagram
Set diagram = model.ClassDiagrams.Item(0)
' Create classes
CreateClasses model, diagram
' Create classes function
Function CreateClasses (model, diagram)
' Create a class

Dim cls

Set cls = model.CreateObject (PAOOM.cls Class)

cls.Name = "Customer"

cls.Code = "Customer"

cls.Comment = "Customer class"

cls.Stereotype = "Class"

cls.Description = "The customer class defines the attributes and behaviors of a
customer."

' Create attributes

CreateAttributes cls

' Create methods
CreateOperations cls

' Create a symbol for the class

Dim sym
Set sym = diagram.AttachObject (cls)
CreateClasses = True

End Function
' Create attributes function
Function CreateAttributes (cls)

Customizing and Extending PowerDesigner

Dim attr
Set attr = cls.CreateObject (PdOOM.cls Attribute)
attr.Name = "ID"
attr.Code = "ID"
attr.DataType = "int"
attr.Persistent = True
attr.PersistentCode = "ID"
attr.PersistentDataType = "I"
332 © 2016 SAP SE or an SAP affiliate company. All rights reserved.

Scripting PowerDesigner

attr.PrimaryIdentifier

Set attr = cls.CreateObject (PAOOM.cls Attribute)

attr.Name = "Name"
attr.Code = "Name"
attr.DataType = "String"

attr.Persistent = True
attr.PersistentCode =
attr.PersistentDataType

"A3Q"

Set attr = cls.CreateObject (PAOOM.cls Attribute)

attr.Name = "Phone"
attr.Code = "Phone"
attr.DataType = "String"

attr.Persistent = True

attr.PersistentCode

attr.PersistentDataType

"poQO"

Set attr = cls.CreateObject (PdOOM.cls Attribute)

attr.Name = "Email"
attr.Code = "Email"
attr.DataType = "String"

attr.Persistent = True
attr.PersistentCode =
attr.PersistentDataType
CreateAttributes = True

End Function

' Create operations function
Function CreateOperations(cls)

"A3Q"

Set oper = cls.CreateObject (PdOOM.cls Operation)

Dim oper

oper.Name = "GetName"
oper.Code = "GetName"
oper.ReturnType = "String"
Dim body

body = "{" + vbCrLf

body = body + " return Name;"

body = body + "}"
oper.Body = body

+ vbCrLf

Set oper = cls.CreateObject (PAOOM.cls Operation)

oper.Name = "SetName"
oper.Code = "SetName"
oper.ReturnType = "void"

Dim param

Set param = oper.CreateObject (PAOOM.cls Parameter)

param.Name = "newName"
param.Code = "newName"
param.DataType = "String"

body = "{" + vbCrLf

body = body + " Name

body = body + "}"
oper.Body = body

CreateOperations = True

End Function

Customizing and Extending PowerDesigner
Scripting PowerDesigner

newName;" + vbCrLf

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

333

EI% Customer Management *

(ClassDiagram_1

EI__] Classes M
EI Customer . DEous
I_:_|__] Attributes f ﬁm ﬁing
e == - Phone : Shing
..... = Name - Email : String
= = Phone + GetName {) : String
. E Email + SetMame {Sting newMame) : void
B3 Operations
.- GetName
SetName
-4 Parameters
. newName
B3 Identfiers
fo B Identifier_1

7.2 Manipulating Models, Collections, and Objects

(Scripting)

You can manipulate the contents of a model by creating or opening it and then descending from the model root
through collections of objects. A number of global properties, functions, and constants are available in any
context and provide entry points for your scripts.

The following global properties provide access to the Workspace and models it contains:

ActiveWorkspace - Retrieves the current Workspace.

ActiveModel, ActivePackage, and ActiveDiagram - Retrieves the model, package, or diagram with
current focus.

ActiveSelection - Read-only collection of the objects selected in the active diagram.
Models - Read-only collection of models open in the current Workspace.

RepositoryConnection - Retrieves the current repository connection (see Manipulating the Repository
(Scripting) [page 344]).

The following global functions are commonly used to create or open models and perform actions upon them:

CreateModel () and OpenModel () - Create and open a model (see Creating and Opening Models (Scripting)
[page 335]).

Ooutput () - Prints text to the Script tab of PowerDesigner's Output window.

IsKindOf () - Tests the metaclass of the object.

ExecuteCommand () - Launches an external application

EvaluateNamedPath () and MapToNamedPath () - Manage named paths in model files.

BeginTransaction (), CancelTransaction(),and EndTransaction () - Start, cancel, and commit
transactions.

The following global constants provide information about the instance of PowerDesigner:

334

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

® UserName - Retrieves the user login name.

® vVersion - Returns the PowerDesigner version.

® HomeDirectory - Returns the application home directory.

® RegistryHome - Returns the application registry home path.

® vViewer - Returns True if the running application is a Viewer version that has limited features.

® validationMode - By default, PowerDesigner performs various checks to validate your actions and gives an
error in the case of a forbidden action. You can set validationMode = False (which turns off validation

rules such as name uniqueness or link extremities) to improve performance or if your algorithm temporarily
requires an invalid state.

® InteractiveMode - Specifies the level of interaction required. You can choose between:
o im Batch [default] - Suppresses dialog boxes and always uses default values. For example, if your model

contains external shortcuts and the target model for the shortcuts is closed, this mode will automatically
open the model without user interaction.

© im Dialog - Displays information and confirmation dialog boxes that require user interaction for the
execution to keep running.
© im Abort - Suppresses dialog boxes and aborts execution if a dialog is encountered.
® ShowMode [OLE-specific] - Checks or changes the visibility status of the main application window. Returns
True if the application main window is visible and not minimized.

® Tocked[OLE-specific] - When set to True, ensures that PowerDesigner continues to run even after an OLE
client disconnects.

For detailed information about all the global properties, constants, and functions, select | Help » MetaModel

Objects Help 3 and navigate to Basic Elements.

7.2.1 Creating and Opening Models (Scripting)

You create models and open existing models using the CreateModel () and OpenModel () global functions. The
model with the current focus is accessible via the ActiveModel global property, and the models currently openin
the workspace are available from the Mode1s global collection.

This script creates a new OOM targeting the Analysis language, creates some classes in it, displays them in the
diagram, and then saves the model and closes it:

Dim NewModel

set NewModel = CreateModel (PAOOM.Cls Model, "Language=Analysis|Diagram=ClassDiagram|
COpy")

If NewModel is Nothing then

msgbox "Failed to create UML Model", vbOkOnly, "Error" ' Display an error message
Else
output "The UML model has been created" ' Display a message in Output

NewModel .SetNameAndCode "MyOOM", "MyOOM" 'Initialize model name and code
For idx = 1 to 12 'Create classes and display them

Set obj=NewModel.Classes.CreateNew ()

obj.SetNameAndCode "C" & idx, "C" & idx

Set sym=ActiveDiagram.AttachObject (ob7j)

Next
ActiveDiagram.AutoLayoutWithOptions (2)
NewModel.Save "c:\temp\MyOOM.oom" ' Save the model

NewModel.Close ' Close the model
Set NewModel = Nothing ' Release last reference to object to free memory
End If

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 335

This script verifies that the previously created model exists, and then opens it in the workspace:

Dim MyModel, FileName

FileName = "c:\temp\MyOOM.oom"

On Error Resume Next ' Avoid generic scripting error message
Set MyModel = OpenModel (FileName)

If MyModel is nothing then ' Display an error message box

msgbox "Failed to open Model:" + vbCrLf + FileName, vbOkOnly, "Error"
Else ' Display a message in Output

output "The OOM has been opened."

End If

7.2.2 Browsing and Modifying Collections (Scripting)

Most metamodel navigation is performed by descending from the model root through collections of objects to
collections of sub-objects or associated objects. An OOM contains a collection of classes and classes contain
collections of attributes and operations. You can obtain information about and browse the members of a
collection through scripting, as well as adding, removing, and moving objects in the collection.

To browse the members of a collection, navigate to the parent object and then use a For each loop. This script
prints the names of all the tables in an open PDM:

Dim MyModel

Set MyModel=ActiveModel

For each t in MyModel.Tables

Output "* " & t.Name
Next

When you browse a collection, both full objects in the collection and any shortcuts will be retrieved.

1 Note

For information about accessing collections defined in extensions, see Creating and Accessing Extensions
(Scripting) [page 353].

The following kinds of collections appear in the metamodel:

e Compositions - contain objects that will be deleted if the parent is deleted. For example, the PdPDM/Tables
and PdPDM/Table/Columns collections are compositions.

e Aggregations - reference objects that will continue to exist if the parent is deleted. For example, the
PdCommon/NamedObject/AttachedRules collection (inherited by most objects) is an aggregation.

e Unordered collections - contain objects with no significant order. For example, the PACDM/Entity/
Relationships collectionis unordered.

e Ordered collections - contain objects where the user chooses the order. For example, the PdPDM/Table/
Columns collection is ordered.

e Read-only collections - can only be browsed. For example, the global Mode1s collection (all open models) is
read-only.

The following properties are available for all collections:

® Count - Retrieves the number of objects in the collection.

® Ttem[(<index>)] - Retrieves the specified item in the collection as an object. Item (0) is the first object
(and the default) and 1tem (-1) is the last object.

Customizing and Extending PowerDesigner
336 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

® MetaCollection - Retrieves the metadefinition of the collection as an object.
® Kind - Retrieves the type of objects the collection can contain.
® sSource - Retrieves the object on which the collection is defined.

The following methods are available for modifying writeable collections:

® CreateNew ([<kind>] and CreateNewAt (<index>[,<kind>]) - [compositions only] Creates a new
object at the end of the collection or at the specified <index> (default, -1). The <kind> parameter (for
example, PAPDM. cls Table) is only needed if the collection supports multiple kinds of objects.

® Add(<object>) -Inserts the specified <object> at the end of the collection.

® TInsert([<index>][, <object>]) -Inserts the specified <object> inthe collection at the specified

<index> position (default, -1).
® Move (<index2>, <index1>) - Moves the object at position <index1> to position <index2> in the
collection.

® Remove (<object>[, delete = y|n]) andRemoveAt ([<index>][, delete = y|n]) - Removesthe
specified <object> or the object at the specified <index> (default, -1) from the collection. For aggregations,

you can additionally specify to delete the object (objects removed from a composition are always deleted).

® (Clear([delete = y|n]) - Removes all objects from the collection and optionally deletes them.

The following script:

e (CreatesaPDM,
® (reates objects in the model's Tables and BusinessRules unordered composition collections, and

e Adds some objects to table T1's AttachedRules ordered aggregation collection and then manipulates that

collection:

Dim MyModel, t, r, sym
set MyModel = CreateModel (PAPDM.Cls Model, "DBMS=SYASA12")
MyModel . SetNameAndCode "MyPDM" , "MyPDM"
'Create tables and rules
For idx = 1 to 12
Set t=MyModel.Tables.CreateNew ()
t.SetNameAndCode "T" & idx, "T" & idx
Set sym=ActiveDiagram.AttachObject (t)
Set r=MyModel.BusinessRules.CreateNew ()
r.SetNameAndCode "BR" & idx, "BR" & idx
Next
ActiveDiagram.AutoLayoutWithOptions (2)
'Attach rules to Table 1
Dim MyTable
Set MyTable=MyModel.FindChildByName ("T1",cls table)
For idx = 1 to 10
MyTable.AttachedRules.Add (MyModel.FindChildByName ("BR" &
(idx),cls businessrule))

Next
'Print list of rules attached to Table 1
Output "Rules Attached to Tl (" & MyTable.AttachedRules.Count & ")"

For each r in MyTable.AttachedRules

Output "* " & r.Name
Next
'Modify attached rules by insertion, move and removal
MyTable.AttachedRules.Insert 3, MyModel.FindChildByName ("BR12",cls businessrule)
MyTable.AttachedRules.Move 5,0
MyTable.AttachedRules.Remove (MyModel.FindChildByName ("BR6",cls businessrule))
'Print modified list of rules
Output "Modified Rules Attached to Tl (" & MyTable.AttachedRules.Count & ")"
For each r in MyTable.AttachedRules

Output "* " & r.Name
Next

Customizing and Extending PowerDesigner

Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved.

337

7.2.3 Accessing and Modifying Objects and Properties
(Scripting)

You can access and modify any PowerDesigner object and its properties by script. Objects include not only
standard design objects (such as tables, classes, processes, and columns), but also diagrams and symbols and
functional objects (such as a report or repository). An object belongs to a metaclass of the PowerDesigner
metamodel and inherits properties, collections and methods from its metaclass.

Root objects, such as models, are accessed using global properties and functions (see Manipulating Models,
Collections, and Objects (Scripting) [page 334]), while standard objects are accessed by browsing collections
(see Browsing and Modifying Collections (Scripting) [page 336]) or individually through the following methods:
® FindChildByName ("<Name>",<Kind>[,<OptionalParams>]
® FindChildByCode ("<Code>",<Kind>[,<OptionalParams>]

® FindChildByPath ("<Path>",<Kind>[,<OptionalParams>]

The following parameters are available:

Table 224:
Parameter Description
<Name> / <Code>/ Specifies the name or code of, or the path to the object. For example, to find the column Address in
<Path> the table Customer in the package Sales from the context of the model node, you could search by
name Address or by path Sales/Customer/Address.
<Kind> Specifies the metaclass of the object to find in the form c1s_<PublicName>. For example, to find

acolumn, selectcls Column.

These metaclass ids are unique within their model library but, in cases such as packages, which ap-
pear in multiple types of models, you must prefix the id with the name of the module

(PdOOM.cls Package). When you create a model, you must use the module prefix (for example
PAPDM.cls Model).

<OptionalParams> | The following parameters are optional:

e "Stereotype" - Specifies that the object to find must bear the specified stereotype.

e "LastFound" - Specifies to begin the search after this object. This parameter is used when
several objects have the same path value, and can be used to launch a find in a while loop that
uses the previous match as the last found parameter.

® CaseSensitive=y|n -[default: y] Specifies that the search is case sensitive.

e TIncludeShortcuts -[default: n] Specifies that shortcuts can be found.

e UseCodeInPlaceOfName - [ByPath, default: n] Specifies that the object can be found by its
code.

e PathSeparator - [ByPath, default=/, \, or ::)] Specifies the character to separate nodes in
the path.

You can get standard attribute values using the dot notation (<object>.<attribute>) or using the following
methods:

® GetAttribute ("<attribute>") -retrieves the value stored for the attribute
® GetAttributeText ("<attribute>") -retrieves the value displayed for the attribute

You can set attribute values using the dot notation (<object>.<attribute>=<value>) or using the following
methods:

Customizing and Extending PowerDesigner
338 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

® SetAttribute "<attribute>", <value>

® SetAttributeText "<attribute>", "<value>"

1 Note

For information about getting and setting extended attribute values see Creating and Accessing Extensions

(Scripting) [page 353]

The following script opens a sample OOM, finds a class by name and a parameter by path, and then prints and

modifies some of their properties:

Dim MyModel, C, P
'Open model file

Set MyModel=OpenModel(EvaluateNamedPath("%_EXAMPLES%\" & "UML2 Sample.oom"))

'Obtain class and parameter

Set C=MyModel.FindChildByName ("OrderManager",
Set P=Mymodel.FindChildByPath ("SecurityManage
login", PdOOM.cls Parameter)

'Print initial wvalues

Output "Initial Values:"

PrintProperties C, P

'Modify values

C.Comment="This class controls orders."
C.SetAttributeText "Visibility", "private"
P.Name="LoginName"

'Print revised values

Output "Revised Values:"

PrintProperties C, P

'Procedure for printing values

Sub PrintProperties (MyClass, MyParam)

cls Class)
r/CheckPassword/

output "Class: " & MyClass.Name

output vbTab & "Comment: " & MyClass.Comment

output vbTab & "Visibility: " & MyClass.GetAttributeText ("Visibility")
output vbTab & "Persisted as: " &

MyClass.GetAttributeText ("PersistentGenerationMode")

output "Parameter: " & MyParam.Parent & "." & MyParam.Name

output vbTab & "Data type: " & MyParam.DataType

output vbTab & "Parameter type: " & MyParam.GetAttributeText ("ParameterType")
End Sub

7.2.4 Creating Objects (Scripting)

You should generally create objects via the collection under the parent object using the CreateNew () method.

The CreateObject (<kind>) method is also available on model objects.

This script creates a class in an OOM, sets some of its properties, and then creates an attribute under the class, in

each case creating the objects inside collections:

Dim MyModel
Set MyModel = ActiveModel
Dim MyClass
' Create a class
Set MyClass = MyModel.Classes.CreateNew ()
If MyClass is nothing Then
' Display an error message box
msgbox "Fail to create a class", vbOkOnly,
Else
output "The class has been created."

Customizing and Extending PowerDesigner
Scripting PowerDesigner

"Error"

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

339

' Set Name, Code, Comment, Stereotype and Final attributes
MyClass.SetNameAndCode "Customer", "cust"
MyClass.Comment = "Created by script"
MyClass.Stereotype = "MyStereotype"
MyClass.Final = true

' Create an attribute inside the class

Dim MyAttr

Set MyAttr = MyClass.Attributes.CreateNew ()
If not MyAttr is nothing Then

output "The attribute has been created."
MyAttr.SetNameAndCode "Name", "custName"

MyAttr.DataType = "String"

' Reset the variable in order to avoid memory leaks
End If
End If

You can also create objects using the CreateObject (<kind>) method. This script creates a class inside an
OOM and sets some of its properties:

Dim MyModel

Set MyModel = ActiveModel

Dim MyClass

' Create a class

Set MyClass = MyModel.CreateObject (cls_Class)
MyClass.SetNameAndCode "Another Class", "Class2"
MyClass.Comment = "Created by CreateObject"

When creating a link object, you must define its extremities. This script creates two classes and joins them by an
association link:

Dim MyModel

Set MyModel = ActiveModel

Dim MyFirstClass, MySecondClass, MyAssociation

' Create classes

Set MyFirstClass = MyModel.Classes.CreateNew ()

MyFirstClass.SetNameAndCode "Classl", "C1"

Set MySecondClass = MyModel.Classes.CreateNew ()
MySecondClass.SetNameAndCode "Class2", "C2"

' Create association

Set MyAssociation = MyModel.Associations.CreateNew ()

MyAssociation.Name = "Al"

' Define its extremities

Set MyAssociation.Objectl MyFirstClass

Set MyAssociation.Object2 = MySecondClass

7.2.5 Displaying, Formatting, and Positioning Symbols
(Scripting)

When you create an object, it will not appear in a diagram unless you use the AttachObject () or
AttachLinkObject () method. Symbols are objects in their own right that can be accessed via collections on the
parent object or diagram. You can position a symbol using the Position () method and change its format using
the Linewidth and other formatting attributes.

The following script creates two classes, joins them by an association link, and displays all three symbols in the
active diagram:

Dim MyModel, MyDiagram, Cl, C2, Al
Set MyModel = ActiveModel

Customizing and Extending PowerDesigner
340 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

Set MyD
' Creat
Set C1
Cl.SetN
Set C2
C2.Se
' Displ
MyDiagr
MyDiagr
' Creat
Set Al
Al.SetN
' Defin
Set Al.
Set Al.
' Displ
MyDiagr

iagram = ActiveDiagram

e classes

= MyModel.Classes.CreateNew ()
ameAndCode "C1", "C1"

= MyModel.Classes.CreateNew ()
tNameAndCode "C2", "C2"

ay class symbols
am.AttachObject (Cl)
am.AttachObject (C2)

e association

= MyModel.Associations.CreateNew ()
ameAndCode = "Al", "ALl"

e its extremities

Objectl = C1

Object2 C2

ay Association symbol
am.AttachLinkObject (Al)

The following script creates an EAM and four architecture areas, aligns them in a square, and formats the top-left

.Symbols.
.Symbols.
.Symbols.
.Symbols.

Item(0)
ITtem(0)
ITtem(0)
Item(0)

area:
Dim NewModel, idx, obj, sym
set NewModel = CreateModel (PAEAM.Cls Model, "Diagram=CityPlanningDiagram")
NewModel . SetNameAndCode "MyEAM" , "MyEAM"
For idx = 1 to 4
Set obj=NewModel.ArchitectureAreas.CreateNew ()
obj.SetNameAndCode "A" & idx, "A" & idx
Set sym=ActiveDiagram.AttachObject (ob7j)
sym.width=30000
sym.height=20000
Next
dim Al, A2, A3, A4, X1, Y1
set Al = NewModel.FindChildByName ("Al",cls architecturearea)
set A2 = NewModel.FindChildByName ("A2",cls architecturearea)
set A3 = NewModel.FindChildByName ("A3",cls architecturearea)
set A4 = NewModel.FindChildByName ("A4",cls architecturearea)
X1 = Al.Position.X
Yl = Al.Position.Y
' Move symbols for them to be adjacent
A2 .Position = NewPoint (X1 + Al.Width, Y1)
A3.Position = NewPoint (X1, Y1 - Al.Height)
A4 .Position = NewPoint (X1 + Al.Width, Y1 - Al.Height)
Al.DashStyle = 2
Al.LineWidth = 3

7.2.6

Deleting Objects (Scripting)

You can delete objects using the Delete method.

The following script creates a new CDM, populates it with entities and relationships, and then deletes entity E5

and relationship r8:

Dim MyModel, obj, sym, idx

set MyModel = CreateModel (PACDM.Cls Model)
MyModel . SetNameAndCode "MyCDM" , "MyCDM"
'Create entities

For idx = 1 to 12

Set

obj.

Set
Next

Customizing an

Scripting PowerDesigner

obj=MyModel .Entities.CreateNew ()
SetNameAndCode "E" & idx, "E" & idx
sym=ActiveDiagram.AttachObject (obj)

d Extending PowerDesigner

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

341

'Create relationships
For idx = 2 to 11
Set obj=MyModel.Relationships.CreateNew ()
obj.SetNameAndCode "R" & idx-1, "R" & idx-1
Set obj.Objectl = MyModel.FindChildByName ("E" & (idx-1),cls entity)
Set obj.Object2 = MyModel.FindChildByName ("E" & (idx+1l),cls entity)
Set sym=ActiveDiagram.AttachLinkObject (obj)
Next
ActiveDiagram.AutoLayoutWithOptions (2)
'Delete objects
MyModel.FindChildByName ("E5",cls entity) .Delete
MyModel.FindChildByName ("R8",cls relationship) .Delete

7.2.7 Creating an Object Selection (Scripting)

You can create a selection of objects using the Createselection () method. You can perform actions on the
selection such as changing properties or format or moving them to another package.

The following script creates a PDM, populates it with tables and then makes a selection of tables and moves them
into a package:

Dim MyModel, obj, sym
set MyModel = CreateModel (PdPDM.Cls Model, "DBMS=SYASA12")
MyModel . SetNameAndCode "MyPDM" , "MyPDM"
'Create tables
For idx = 1 to 12
Set obj=MyModel.Tables.CreateNew ()
obj.SetNameAndCode "T" & idx, "T" & idx
Set sym=ActiveDiagram.AttachObject (obj)
Next
ActiveDiagram.AutoLayoutWithOptions (2)
'Create package
Dim MyPackage
Set MyPackage=MyModel.Packages.CreateNew ()
MyPackage.SetNameAndCode "P1", "P1"
ActiveDiagram.AttachObject (MyPackage)
'Create selection
Dim MySelection
Set MySelection = ActiveModel.CreateSelection
For idx = 1 to 5
MySelection.Objects.Add (MyModel.FindChildByName ("T" & (idx*2),cls table))
Next
'Move selection to package
MySelection.MoveToPackage (MyPackage)

To add all the tables to the selection, use the Addobjects method:
MySelection.AddObjects MyModel,cls table
To remove an object from the selection, use the Remove method:

MySelection.Objects.Remove (MyModel.FindChildByName ("T6",cls table))

Customizing and Extending PowerDesigner
342 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

7.2.8 Controlling the Workspace (Scripting)

You can access the current workspace using the ActiveWorkspace global property, open, save, and close
workspaces, and add folders and documents to it.

The following script constructs a simple folder structure in a workspace and adds and creates several models in it:

Option Explicit
' Close existing workspace and save it to Temp
Dim workspace, curentFolder
Set workspace = ActiveWorkspace
workspace.Load "% EXAMPLES$\mywsp.sws"
Output "Saving current workspace to ""Example directory
"t+EvaluateNamedPath ("% EXAMPLES%\temp.sws")
workspace.Save "% EXAMPLES$\Temp.SWS"
workspace.Close
workspace.Name = "VBS WSP"
workspace.FileName = "VBSWSP.SWS"
workspace.Load "% EXAMPLES$\Temp.SWS"
dim Item, subitem
for each Item in workspace.children
If item.IsKindOf (PdWsp.cls WorkspaceFolder) Then
ShowFolder (item)
renameFolder item, "FolderToRename", "RenamedFolder"
deleteFolder item,"FolderToDelete"
curentFolder = item
ElsIf item.IsKindOf (PdWsp.cls WorkspaceModel) Then
ElsIf item.IsKindOf (PdWsp.cls WorkspaceFile) Then
End if
next
Dim subfolder
'insert folder in root
Set subfolder = workspace.Children.CreateNew (PdWsp.cls WorkspaceFolder)
subfolder.name = "Newfolder (VBS)"
'insert folder in root at pos 6
Set subfolder = workspace.Children.CreateNewAt (5, PdWsp.cls WorkspaceFolder)
subfolder.name = "Newfolder (VBS)insertedAtPos5"'
' add a new folder in this folder
Set subfolder = subfolder.Children.CreateNew (PdWsp.cls WorkspaceFolder)
subfolder.name = "NewSubFolder (VBS)"
subfolder.AddDocument EvaluateNamedPath ("% EXAMPLES$\pdmrep.rtf")
subfolder.AddDocument EvaluateNamedPath ("% EXAMPLES$\cdmrep.rtf")
subfolder.AddDocument EvaluateNamedPath ("% EXAMPLES$\project.pdm")
subfolder.AddDocument EvaluateNamedPath("%_EXAMPLES%\demo.oom")
dim lastmodel
set lastmodel = subfolder.AddDocument (EvaluateNamedPath ("% EXAMPLESS%
\Ordinateurs.fem"))
lastmodel.open
lastmodel.name = "Computers"
lastmodel.close
'detaching model from workspace
lastmodel.delete
workspace.Save "% EXAMPLES%\Final.SWS"

For more information about properties and methods available on the workspace, select [Help » MetaModel
Objects Help Jand navigate to Libraries/PdWSP/Workspace.

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 343

7.3 Manipulating the Repository (Scripting)

You can connect to a repository, browse and manipulate its contents and its users and groups through the
RepositoryConnection object.

The following script opens a repository connection, lists its top-level contents and then creates a new folder and
relists the contents, before closing the connection:

Dim rc : Set rc = RepositoryConnection

rc.Open "Repository", "PDUser", "PDPassword", "DBUser", "DBPassword"
Output "Connected!"

ListChildren rc

'Create Folder

Dim TargetFolder : Set TargetFolder = rc.CreateFolder ("MyFolder")
ListChildren rc

rc.Close

Output "Disconnected!"

'List repository contents

Sub ListChildren (rc)

Output "Repository Contents:"

For each ¢ in rc.ChildObjects

Output "* " & c.Name & " (" & c.metaclass.PublicName & " - Modified: " &
c.ModificationDateInRepository & ")"
Next
End Sub

For detailed information about the members, collections, and methods available for scripting the repository,
select | Help » MetaModel Objects Help 3 and navigate to Libraries/PdRMG.

7.3.1 Creating Repository Groups, Users and Folders

An administrator typically creates repository groups with specific rights, assigns users to them, and gives them
permissions on repository folders. You can perform all of these tasks through scripts.

Creating Groups and Granting Rights

This script fragment defines a repository connection and a list of groups, specifying each group's code and name,
along with whether it will receive standard or senior rights:

Option Explicit

Dim rc : Set rc = RepositoryConnection

Dim Groups (5) : output "*** Creating Groups ***"
Groups (0) =Array ("ProcessOwners", "Process Owners","junior")
Groups (1) =Array ("ProcessAnalysts", "Process Analysts","senior")

(
(1) (
Groups (2) =Array ("DataModelers", "Data Modelers","junior")
Groups (3) =Array ("SeniorDataModelers", "Senior Data Modelers","senior")
Groups (4) =Array ("EAModelers","EA Modelers","junior")
Groups (5) =Array ("SeniorEAModelers", "Senior EA Modelers","senior")

This script fragment creates the groups defined above, and assigns rights to them:

Dim i, g

Customizing and Extending PowerDesigner
344 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

For 1 = 0 to UBound (Groups)

Set g = rc.CreateGroup ()

g.GroupCode = Groups (i) (0)

g.GroupName = Groups (i) (1)

g.rights = SRmgUserRightConnect

if Groups (i) (2) = "senior" then

g.Rights = g.Rights OR SRmgUserRightFreezeVersions OR

SRmgUserRightLockVersions OR SRmgUserRightManageBranches OR
SRmgUserRightManageConfigurations

End If

output "Created group " & g.GroupName & " with " & Groups (i) (2) & " rights"

Next

The following rights are available:

® Connect (SRmgUserRightConnect) - Connect to the repository

® Edit on Web (SRmgUserRightEditPortalObjects) - Create and edit diagrams in PowerDesigner Web.

® Edit Extensions on Web (SRmgUserRightEditPortalExtensions) - Create and edit custom
properties in PowerDesigner Web.

® Freeze Versions (SRmgUserRightFreezeVersions) - Freeze and unfreeze document versions.

® Lock Documents (SRmgUserRightLockVersions) - Lock documents to prevent other users from making
changes to them.

® Manage Branches (SRmgUserRightManageBranches) - Create repository branches

® Manage Configurations (SRmgUserRightManageConfigurations) - Create sets of repository
documents (see Creating Configurations (Scripting) [page 3471).

® Manage All Documents (SRmgUserRightManageAllDocuments) - Perform any action on any document
version. Implicitly includes Full permission on all repository documents.

® Manage Users & Permissions (SRmgUserRightManageUsers) - Create, modify, and delete repository
users and groups, grant them rights, and add them to groups. Users with this right can list all repository
documents and set permissions on them without needing explicit Full permission.

® Manage Repository (SRmgUserRightManageRepository) - Create, upgrade, and delete the repository
database.

Creating Users and Inserting Them into Groups

This script fragment defines a list of users, specifying each user's login name, full name, email address, and the
code of the group into which it will be inserted:

Dim Users (5) : output VbCrLf & "*** Creating Users ***"

Users (0)=Array ("aanderson","Alan Anderson","aal@acme.com","ProcessOwners")
Users (1)=Array ("bbrown","Bill Brown", "bb@acme.com", "ProcessAnalysts")
Users (2)=Array ("ccox","Caroline Cox","cc@acme.comn", "DataModelers")

Users (3)=Array("ddent", "Diana Dent","dd@acme.com", "SeniorDataModelers")
Users (4)=Array ("eevans","Eric Evans", "ee@acme.com", "EAModelers")

Users (5)=Array ("ffrench","Fiona French","ff@acme.com","SeniorEAModelers")

This script fragment creates the users defined above, generates a temporary password for them, and inserts
them into the appropriate groups:

Dim u, ug

For 1 = 0 to UBound (Users)
Set u = rc.CreateUser ()
u.LoginName = Users (i) (0)

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 345

u.FullName = Users (i) (1)

u.EmailAddress = Users (i) (2)
u.SetPassword (rc.GeneratePassword())
output "Created user " & u.LoginName & " (" & u.FullName & ": " & u.EmailAddress

& ") "

' Add User to Group

Set ug = rc.GetGroup (Users (i) (3))

ug.AddMember (u.LoginName)

output VBTab & "Added " & u.LoginName & " to group " & ug.GroupName
Next

Creating Folders and Granting Permissions

This script fragment defines a list of folders, specifying each folder's name and the codes of the groups that will be
granted submit and write permissions to it:

Dim Folders(2) : output VbCrLf & "*** Creating Folders ***"
Folders (0)=Array ("EA Models", "EAModelers", "SeniorEAModelers")
Folders (1)=Array ("Process Models","ProcessOwners","ProcessAnalysts")
Folders (2)=Array ("Data Models", "DataModelers", "SeniorDataModelers")

This script fragment creates the folders defined above, and grants the permissions to the appropriate groups:

Dim £, fg
For i = 0 to UBound(Folders)
Set f = rc.CreateFolder (Folders (i) (0))
output "Created folder " & f.Name
'Set Folder Permissions
Set fg = rc.GetGroup (Folders (i) (1))
f.SetPermission fg, SRmgPermissionSubmit
output VBTab & "Granted Submit permission to group " & fg.GroupName
Set fg = rc.GetGroup (Folders (i) (2))
f.SetPermission fg, SRmgPermissionWrite
output VBTab & "Granted Write permission to group " & fg.GroupName
Next

The following permissions are available:

® List(SRmgPermissionListable) - View the document or folder in the repository browser and in search
results. Without this permission, the folder or document is hidden from the user.

® Read (SRmgPermissionRead) -

® Submit (SRmgPermissionSubmit) -

® Write (SRmgPermissionWrite)-

® Full (SRmgPermissionFull)-

1 Note

Administrators, who have implicit Full permission on all repository objects, will only receive diagrams for
review if they have been granted explicit Write permission on them.

Customizing and Extending PowerDesigner
346 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

7.3.2 Checking Documents In and Out (Scripting)

You can check documents in and out of the repository by script.

The following script opens a repository connection, creates a new PDM and checks it in, then updates the model,
checks it in again, and then closes the connection:

Dim rc : Set rc = RepositoryConnection

'Create model

Dim NewModel

Set NewModel = CreateModel (PAPDM.Cls Model, " |Language=SYASIQ1540")
NewModel .Name = "MyPDM"

Output "Model created!"

NewModel.Tables.CreateNew ()

'Check model into subfolder

Dim TargetFolder

Set TargetFolder = rc.FindChildByPath ("MyFolder", PdRMG.Cls RepositoryFolder)
NewModel .CheckInNew (TargetFolder)

Output "Checked in!"

'Update and recheck in the model

NewModel .Tables.CreateNew ()

NewModel.CheckIn

Output "Checked in again!"

rc.Close

To check out a model not present in your workspace, use the CheckOut method:

Dim rc : Set rc = RepositoryConnection

'Check out model

Dim TargetModel

Set TargetModel = rc.FindChildByPath ("MyFolder/MyPDM", PdRMG.Cls RepositoryModel)
TargetModel.CheckOut ()

Output "Checked Out!"

rc.Close

To update a model present in your workspace from the repository, use the UpdateFromRepository method.

7.3.3 Creating Configurations (Scripting)

You can create a configuration and add document versions to it through scripts.

This script fragment creates a simple folder structure:

Option Explicit

Dim rc : Set rc = RepositoryConnection

' Create folder structure

Dim ProjectFolder, DesignFolder, ImplementFolder

Set ProjectFolder = rc.CreateFolder ("Project X")

Set DesignFolder = ProjectFolder.CreateFolder ("Design Models")

Set ImplementFolder = ProjectFolder.CreateFolder ("Implementation Models")

This script fragment creates an EAM and a PDM and checks them in multiple times to the subfolders:

'Create and check in models

Dim NewEAM, NewPDM

Set NewEAM = CreateModel (PdEAM.Cls Model)

Set NewPDM = CreateModel (PAPDM.Cls Model, " |Language=SAP AS Enterprise 16.0")
NewEAM. SetNameAndCode "My EAM", "MyEAM" : Output "Created: " & NewEAM.Name

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 347

NewPDM. SetNameAndCode "My PDM", "MyPDM" : Output "Created: " & NewPDM.Name
NewEAM.CheckInNew (DesignFolder)
NewPDM.CheckInNew (ImplementFolder)
' Update and recheck in models to create versions
Dim i : For i = 0 to 4
NewEAM.Processes.CreateNew ()
NewPDM.Tables.CreateNew ()

NewEAM.CheckIn : Output "Checked in: " & NewEAM.Name & " v" &
NewEAM.ExtractionVersion

NewPDM.CheckIn : Output "Checked in: " & NewPDM.Name & " v" &
NewPDM.ExtractionVersion
Next

This script fragment creates a configuration, adds specific versions of the two models to it using two different
methods, and then checks the configuration out into a temporary folder:

' Create a configuration

Dim NewConfig : Set NewConfig = rc.CreateConfiguration ()
NewConfig.ConfigurationName = "Project X rl"

NewConfig.ConfigurationCode = "Project X rl"

' Add documents to configuration

NewConfig.AddDocumentVersionByCode DesignFolder, "MyEAM", "2"
NewConfig.AddDocumentVersionByPath "Project X/Implementation Models/My PDM", "3"
' Checkout documents to folder

NewConfig.CheckoutConfiguration ("c:\temp\Project X\rl")

Output "Checked out: " & NewConfig.ConfigurationName

7.4 Creating Shortcuts (Scripting)

You create a shortcut in a model using the CreateShortcut () method.

The following script acts on an OOM and creates a shortcut of the class c1 from package P1 in package p2:

Dim obj, shortcut, recipient
' Get class to shortcut
Set obj = ActiveModel.FindChildByPath ("P1/Cl",cls Class)
' Get package to create shortcut in
Set recipient = ActiveModel.FindChildByPath ("P2",PdOOM.cls Package)
' Create shortcut
Set shortcut = obj.CreateShortcut (recipient)
If not shortcut is nothing then
output "The class shortcut has been successfully created"
End If

The following script creates a shortcut of the class c1 from model 01 package p1 directly under model 02:

Dim targetmodel, usingmodel, obj, shortcut
For each m in Models
Output m.Name
If m.Name="0O1l" then 'Get model with object to shortcut
Set targetmodel=m
End If
If m.Name="02" then 'Get model to create shortcut in
Set usingmodel=m
End If
Next
' Get object to shortcut
Set obj = targetmodel.FindChildByPath ("P1/Cl",cls Class)
' Create shortcut

Customizing and Extending PowerDesigner
348 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

Set shortcut = obj.CreateShortcut (receivingmodel)
If not shortcut is nothing then

output "The class shortcut has been successfully created"
End If

7.5 Creating Mappings Between Objects (Scripting)

You can create data sources in a model and from there create mappings from source objects in other models to
objects in the first model using scripts.

The following script creates an OOM and a PDM, populates them with classes and tables, then creates a data
source in the OOM, associates the PDM with it and creates mappings:

Dim MyOOM, MyPDM
'Create an OOM and a PDM
set MyOOM = CreateModel (PAOOM.Cls Model, "|Language=Analysis|Diagram=ClassDiagram|
COpy")
MyOOM. SetNameAndCode "MyOOM", "OOM"
set MyPDM = CreateModel (PdPDM.Cls Model, " |DBMS=SAP SQL Anywhere 16|Copy")
MyPDM. SetNameAndCode "MyPDM", "PDM"
'Create classes and tables
For idx = 1 to 6
Set c=MyOOM.Classes.CreateNew ()
c.SetNameAndCode "Class" & idx, "C" & idx
Set t=MyPDM.Tables.CreateNew ()
t.SetNameAndCode "Table" & idx, "T" & idx
Next
'Create a data source in the OOM and add the PDM as its source
Dim ds, ml
Set ds = MyOOM.DataSources.CreateNew ()
ds.SetNameAndCode "MyPDM", "PDM"
ds.AddSource MyPDM
'Create a mapping between Cl and T6
set ml = ds.CreateMapping (MyOOM.FindChildByName ("Classl",cls class))
ml.AddSource MyPDM.FindChildByName ("Table6",cls table)
' Retrieve mappings for each class in the OOM
For each ¢ in MyOOM.Classes
Dim m, sc
set m = ds.GetMapping(c)
If not m is nothing then
Output c.Name & vbtab & "Mapped to: "
for each sc in m.SourceClassifiers

output vbtab & vbtab & "- " & sc.Name
next
Else
Output c.Name & vbtab & "No mapping defined."
End if
Next

For more information about objects mapping, see Core Features Guide > Linking and Synchronizing Models >
Object Mappings.

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 349

7.6 Creating and Generating Reports (Scripting)

You can create a report, browse its contents, and generate it as HTML or RTF using scripting.

To create areport, use the CreateReport () method on a model. For example:

Dim model
Set model = ActiveModel
model .CreateReport ("MyReport")

To browse the reports in a model, use the Reports collection. For example:

Dim model

Set model = ActiveModel

For each m in model.Reports
Output m.Name

Next

To generate areportas RTF or HTML, use the GenerateRTF () or GenerateHTML () method:

set m = ActiveModel
For each r in m.Reports

filename = "C:\temp\" & r.Name & ".htm"
r.GenerateHTML (filename)
Next

7.7 Generating a Database (Scripting)

You can generate a PDM as a SQL script or directly to a live database connection using the
GenerateDatabase () method. You can generate test data with the GenerateTestData () method.

The following script fragment opens an example PDM and then calls procedures to generate various scripts:

Dim GenDir, MyModel
GenDir = "C:\temp\"
Set MyModel=OpenModel (EvaluateNamedPath ("% EXAMPLES%\" & "project.pdm"))

GenerateDatabaseScripts MyModel 'Generate a SQL script to create the database
ModifyModel MyModel 'Modify each table in the model

GenerateAlterScripts MyModel - Generate alter scripts to modify the database
GenerateTestDataScript MyModel - generate test data to load into the database

This procedure generates a SQL script to create the database:

Sub GenerateDatabaseScripts (m)
Dim opts
Set opts = m.GetPackageOptions ()
InteractiveMode = im Batch ' Avoid displaying generation window
opts.GenerateODBC = False ' Force sgl script generation rather than ODBC
opts.GenerationPathName = GenDir
opts.GenerationScriptName = "MyScript.sqgl"
m.GenerateDatabase ' Launch the Generate Database feature
End Sub

Customizing and Extending PowerDesigner
350 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

To generate to a live database connection, you would connect to the database (using the ConnectToDatabase ()
method) and then set the GenerateODBC property to true.

1 Note

For more information about the generation options, select |+ Help » MetaModel Objects Help 3 and navigate to
Libraries/PdPDM/BasePhysicalPackageOptions.

This procedure modifies the model by adding a new column to each table:

Sub ModifyModel (m)

dim pTable, pCol

For each pTable in m.Tables

Set pCol = pTable.Columns.CreateNew ()

pCol.SetNameAndCode "az" & pTable.Name, "AZ" & pTable.Code

pCol.Mandatory = False

Next
End Sub

This procedure generates an alter script to modify the database:

Sub GenerateAlterScripts (m)

Dim pOpts
Set pOpts = m.GetPackageOptions ()
InteractiveMode = im Batch ' Avoid displaying generate window

' set generation options using model package options

pOpts.GenerateODBC = False ' Force sgl script generation rather than ODBC
pOpts.GenerationPathName = GenDir

pOpts.DatabaseSynchronizationChoice = 0 'force already saved apm as source
pOpts.DatabaseSynchronizationArchive = GenDir & "model.apm"
pOpts.GenerationScriptName = "MyAlterScript.sgl"

m.ModifyDatabase ' Launch the Modify Database feature

End Sub

This procedure generates test data to load to the database:

Sub GenerateTestDataScript (m)

Dim pOpts
Set pOpts = m.GetPackageOptions ()
InteractiveMode = im Batch ' Avoid displaying generate window

' set generation options using model package options
pOpts.TestDataGenerationByODBC = False ' Force sqgl script generation rather than
ODBC

pOpts.TestDataGenerationDeleteOldData = False
pOpts.TestDataGenerationPathName = GenDir

pOpts.TestDataGenerationScriptName = "MyTestData.sqgl"
m.GenerateTestData ' Launch the Generate Test Data feature
End Sub

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 351

7.8 Reverse Engineering a Database (Scripting)

You can connect to a database using the ConnectToDatabase () method, and reverse engineer the schemato a
PDM using ReverseDatabase ().

To connect to a database via a user or system data source, define a constant in the form
"ODBC:<datasourcename>". For example:

Const cnxDSN = "ODBC:SQLAnywhereRepository"
To use a data source file, define a constant with the full path to the DSN file. For example:

Const cnxDSN = "\\romeo\public\DATABASES\ filedsn\SQLAnywhereRepository.dsn"

This script creates a new PDM, connects to a database via a system data source, sets reverse options and
reverses all objects to the PDM:

' Define ODBC data source and PDM file

Const cnxDSN = "ODBC:MyDatabase"

Const cnxUSR = "MyUser"

Const cnxPWD = "MyPassword"

Const filename = "C:\temp\MyReversedDB.pdm"

Dim pModel, pOpt
' Create model with appropriate DBMS

Set pModel=CreateModel (PdPDM.cls Model, " |DBMS=SAP SQL Anywhere 16")
' Hide dialogs
InteractiveMode = im Batch

' Connect to the database
pModel.ConnectToDatabase cnxDSN, cnxUSR, cnxPWD
Set reverse options to reverse all listed objects via ODBC
Set pOpt = pModel.GetPackageOptions ()
pOpt.ReversedScript = False
pOpt.ReverseAllTables = true
pOpt.ReverseAllViews = true
pOpt.ReverseAllStorage = true
pOpt.ReverseAllTablespace = true
pOpt.ReverseAllDomain = true
pOpt.ReverseAllUser = true
pOpt.ReverseAllProcedures = true
pOpt.ReverseAllTriggers = true
pOpt.ReverseAllSystemTables = true
pOpt.ReverseAllSynonyms = true

' Reverse database to model and then save model

pModel .ReverseDatabase
pModel.save (filename)

Customizing and Extending PowerDesigner
352 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

7.9 Creating and Accessing Extensions (Scripting)

You can create extensions by script to define additional properties, new metaclasses, forms, and any other type of
extension to the standard metamodel.

The following example creates an EAM, then creates an extension inside it, defines a new type of object called
tablet derived from the MobileDevice metaclass, and creates an extended attribute and new custom form for
it:

Dim MyModel, MyExt, MyStype, MyExAtt, MyForm, FormDef

set MyModel = CreateModel (PdEAM.Cls Model, "Diagram=TechnologyInfrastructureDiagram")
MyModel . SetNameAndCode "MyEAM" , "MyEAM"

'Create extension

Set MyExt = MyModel.ExtendedModelDefinitions.CreateNew ()

MyExt.Name = "MyExtension"

MyExt.Code = "MyExtension"

'Create stereotype

Set MyStype = MyExt.AddMetaExtension (PdEAM.Cls MobileDevice,

Cls StereotypeTargetItem)

MyStype.Name = "Tablet"

MyStype.UseAsMetaClass = true

'Create extended atrribute

Set MyExAtt = MyStype.AddMetaExtension (Cls ExtendedAttributeTargetItem)

MyExAtt.Name = "TabletType"

MyExAtt.Label = "Type"

MyExAtt.DataType = "12" ' (String) For a full list of values,

' see ExtendedAttributeTargetItem in the Metamodel objects help
MyExAtt.ListOfValues = "iPad;Android;Playbook;Windows8"
MyExAtt.Value = "iPad"

'Create form to replace General tab

Set MyForm = MyStype.AddMetaExtension (Cls FormTargetItem)

MyForm.Name = "ReplaceGeneral"

MyForm.FormType = "GENERAL"

'Assemble form definition

FormDef = "<Form><StandardNameAndCode Attribute=""NameAndCode"" />" & vbcrlf
FormDef = FormDef + "<StandardAttribute Attribute=""Comment"" />" & vbcrlf
FormDef = FormDef + "<ExtendedAttribute Attribute=""TabletType"" />" & vbcrlf
FormDef = FormDef + "<StandardAttribute Attribute=""KeywordList"" /></Form>"
MyForm.Value = FormDef

You can get and set extended attribute values using the following methods:

® GetExtendedAttribute ("<resource.attribute>")
® GetExtendedAttributeText ("<resource.attribute>")
® SetExtendedAttribute "<resource.attribute>" "<value>"

® SetExtendedAttributeText "<resource.attribute>" "<value>"
You can access collections defined in an extension using the following methods:

® GetCollectionByStereotype ("<stereotype>" -for new types of objects defined in an target or
extension file (see Creating New Metaclasses with Stereotypes [page 46]).

® GetExtendedCollection ("<resource.collection>") - for extended collections and compositions (see
Extended Collections and Compositions (Profile) [page 58]).

® GetCalculatedCollection ("<resource.collection>") - for calculated collections (see Calculated
Collections (Profile) [page 61]).

® GetCollectionByName ("<resource.collection>")-for any kind of collection.

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 353

The following script uses the GetCollectionByStereotype () method to access the collection of tablets and
the setExtendedAttribute method to set the tablet type:

Dim col, obj

'The collection of tablets is not directly accessible

set col = ActiveModel.GetCollectionByStereotype ("Tablet")

'Create an array to hold the values to assign to tablet properties
Dim myArray (3)

myArray (0) = "Tabletl, T1l, PlayBook"
myArray(l) = "Tablet2, T2, Android"
myArray (2) = "Tablet3, T3, iPad"
myArray (3) = "Tablet4, T4, iPad"

CreateObjects col, myArray
'Procedure to assign values to properties
Sub CreateObjects (compColl, dataArray)
For Each line In dataArray
Dim myProps
myProps = split(line, ",")
set obj = compColl.CreateNew ()
obj.Name = myProps (0)
obj.Code = myProps (1)
'Special syntax for setting extended attribute
obj.SetExtendedAttribute "MYEXT.TabletType", myProps(2)
Next
End Sub

7.10 Accessing Metadata (Scripting)

You can explore the structure of the PowerDesigner metamodel as a standalone model or starting from object
instances in your model.

For general information about accessing and navigating in the metamodel, see The PowerDesigner Public
Metamodel [page 366]. Metaclasses (such as CheckModelInternalMessage and FileReportItem) thatare
not accessible by script are visible in Metamodel.oom, but bear the <<notScriptable>> stereotype and are not
listed in the Metamodel Object Help file.

You can access metaclasses, metaattributes, and metacollections by iterating over collections descending from
the MetaModel root or individually through the following methods:

e GetMetaClassByPublicName (<name>) - to access a metaclass by its public name.

e GetMetaMemberByPublicName (<name>) - to access a metaattribute or a metacollection by its public name

The following script traverses the metamodel by library and lists each concrete class:

for each 1 in MetaModel.Libraries
for each ¢ in 1.Classes
if c.Abstract = false then
Output 1.PublicName + "." + c.PublicName
end 1if
next
next

The following script locates the BaseClass root and shows the first two levels of inheritance under it:

set root = MetaModel.GetMetaClassByPublicName ("PdCommon.BaseObject")
for each ¢ in root.Children
output c.PublicName

Customizing and Extending PowerDesigner
354 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

for each cc in c.Children
output " " + cc.PublicName
next
next

The following script obtains a table in a PDM, and then shows the metaclass of which the object is an instance, the
parent metaclass and metalibrary to the metaclass, and all the attributes and collections that are available on that
metaclass:

Dim object
Set object = ActiveModel.FindChildByName ("myTable",cls Table)

Output "Object: " + object.Name

Dim metaclass

Set metaclass = object.MetaClass

Output "Metaclass: " + metaclass.PublicName

Output "Parent: " + metaclass.Parent.PublicName
Output "Metalibrary: " + metaclass.Library.PublicName

Output "Attributes:"

For each attr in metaclass.attributes
Output " - " + attr.PublicName

Next

Output "Collections:"

For each coll in metaclass.collections
Output " - " + coll.PublicName

Next

Properties and collections are read-only for all metamodel objects.

7.11 OLE Automation and Add-Ins

OLE Automation provides a way to communicate with PowerDesigner from another application using the COM
architecture. You can write a program using any language that supports COM, such as Word or Excel macros, VB,
Java, C++, or PowerBuilder.You can create executables that call PowerDesigner or add-ins that are called by
PowerDesigner.

OLE Automation samples for different languages are provided in the OLE Automation directory within your
PowerDesigner installation directory.

VBScript programs that run from within PowerDesigner and OLE Automation programs are very similar, but OLE
requires you to work through a PowerDesigner application object, and to use stronger typing. You must:

e C(Create aninstance of the PowerDesigner Application object and release it when your script terminates:

Dim PD As PdCommon.Application

Set PD = CreateObject ("PowerDesigner.Application")
'Enter script here

'Once script is finished, release PD object

Set PD = Nothing

If PowerDesigner is currently running, this instance will be used; otherwise a new instance will be launched. If
you do not specify a version number, the most recent version is used. To specify a specific version, use the
syntax:

Set PD = CreateObject ("PowerDesigner.Application.<version>")

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 355

356

1 Note
PowerDesigner.Application invokes pdlegacyshelll6.exe
Prefix all global properties and functions (see Manipulating Models, Collections, and Objects (Scripting) [page

3347) with the PowerDesigner Application object. For example, to access the model with focus using a
PowerDesigner application object called pPD, use the following syntax:

PD.ActiveModel

Specify object types whenever possible. For example, instead of simply using Dim c1s, you should use:
Dim cls as PdOOM.Class

If your model contains shortcuts, we recommend that you use the following syntax to avoid runtime errors
when the target model is closed:

Dim obj as PdCommon.IdentifiedObject

Adapt the object class ID syntax to the language when you create object. For VBScript, VBA and VB and other
languages that support enumeration defined outside a class, you can use the syntax:

Dim cls as PdOOM.Class
Set cls = model.CreateObject(PdOOM.cls_Class)

For C# and VB.NET, you can use the following syntax (where PdOOM Classes is the name of the
enumeration):

Dim cls As PdOOM.Class
Set cls = model.CreateObject (PAOOM.PdOOM Classes.cls Class)

For other languages such as JavaScript or PowerBuilder, you have to define constants that represent the
objects you want to create. For a complete list of class ID constants, see file VBScriptConstants.vbs in the
PowerDesigner OLE Automation directory.

Add references to the object type libraries you need to use. For example, in a VBA editor, select |f» Tools

References

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

References - TemplateProject

fveailable References: QK
[I5etup Kernel 1.0 Type Library ;I Zancel
[1Setup UI 1.0 Type Library

[] shockwaye Flash
Erowse, ..

.

[]5vbase PAdCommon Type Library
[15vbase PAFRM Type Library

[5vbase PAMTM Type Library Priciky
[J5vbase PAOOM Type Library Help
[15ybase PAPDM Tvpe Library + |

[5vbase PARMG Type Library
[Tabular Daka Contral 1.1 Type Library

[]TheRC
[1TIME hi
1| | b

—Svbase PACDM Tvwpe Library

Location:

Language: Standard

This script is launched from outside PowerDesigner, creates an instance of the PowerDesigner Application object,

and then uses it to create two OOMs through OLE Automation:

'* Purpose: This script displays the number of classes defined in an OOM in the
output window.
Option Explicit
' Main function
Sub VBTest ()

' Defined the PowerDesigner Application object
Dim PD As PdCommon.Application

' Get the PowerDesigner Application object

Set PD = CreateObject ("PowerDesigner.Application")
' Get the current active model

Dim model As PdCommon.BaseModel

Set model = PD.ActiveModel

If model Is Nothing Then

MsgBox "There is no current model."

ElsIf Not model.IsKindOf (PdOOM.cls Model) Then

MsgBox "The current model is not an OOM model."
Else

' Display the number of classes

Dim nbClass

nbClass = Model.Classes.Count

PD.Output "The model '" + model.Name + "' contains " + CStr(nbClass) + " classes.

' Create a new OOM
Dim model2 As PdOOM.Class
Set model2 = PD.CreateModel (PdOOM.cls Model)
If Not model2 Is Nothing Then
' Copy the author name
model2.Author = Model.Author
' Display a message in the output window

PD.Output "Successfully created the model '" + model2.Name + "'."
Else

MsgBox "Cannot create an OOM."

End If
End If

' Release the PowerDesigner Application object

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved.

357

Set PD = Nothing
End Sub

7.11.1 Creating an ActiveX Add-in

You can create ActiveX add-ins to provide additional features to PowerDesigner, and call them through menu
items.

To operate as a PowerDesigner add-in, the ActiveX add-in must implement the IPDAddIn interface, which defines
the following methods, invoked by PowerDesigner to dialog with menus and execute the commands defined by
the add-in:

® HRESULT Initialize([in] IDispatch * pApplication) and HRESULT Uninitialize() - The
Initialize () method initializes communication between PowerDesigner and the add-in. PowerDesigner
provides a pointer to its application object, defined in the PdCommon type library, which allows you to access
the PowerDesigner environment (output window, active model etc.). The Uninitialize () method is called
when PowerDesigner is closed to release all global variables and clean all references to PowerDesigner
objects.

® BSTR ProvideMenultems ([in] BSTR sMenu, [in] IDispatch *pObj) -isinvoked each time
PowerDesigner needs to display a menu, and returns an XML text that describes the menu items to display. It
is called once without an object parameter at the initialization of PowerDesigner to fill the Import and Reverse
menus. When you right-click a symbol in a diagram, this method is called twice: once for the object and once
for the symbol. Thus, you can create a method that is only called on graphical contextual menus.
The DTD for menu definition is as follows:

<!ELEMENT Menu (Command | Separator | Popup) *>
<!ELEMENT Command>
<!ATTLIST Command

Name CDATA #REQUIRED

Caption CDATA #REQUIRED>
<!ELEMENT Separator>
<!ELEMENT PopUp (Command | Separator | Popup) *>
<!ATTLIST PopUp

Caption CDATA #REQUIRED>

For example:

ProvideMenultems ("Object", pModel)

returns the following text:

<Menu>
<Popup Caption="&Perforce">
<Command Name="CheckIn" Caption="Check &In"/>
<Separator/>
<Command Name="CheckOut" Caption="Check &Out"/>
</POPUP>
</MENU>

® BOOL IsCommandSupported([in] BSTR sMenu, [in] IDispatch * pObject, [in] BSTR
sCommandName) - allows you to dynamically disable commands defined in a menu. The method must return
true to enable a command and false to disable it.

Customizing and Extending PowerDesigner
358 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

® HRESULT DoCommand (in BSTR sMenu, in IDispatch *pObj, in BSTR sCommandName) -
implements the execution of a command designated by its name. For example:

DoCommand ("Object", pModel, "CheckIn")

1 Note

To use your add-in, save it to the Add-ins directory beneath your PowerDesigner installation directory and
enable it through the PowerDesigner General Options window (see Core Features Guide > Modeling with
PowerDesigner > Customizing Your Modeling Environment > General Options > Add-Ins).

7.11.2 Creating an XML File Add-in

You can create XML add-ins to group multiple commands for calling executable programs or VB scripts and add
them to PowerDesigner menus.

The following illustration helps you understand the XML file structure:

Caommand : 1
a.r Mame
Caption
0.1 Menus:1 [0.7 | Menu:2 o Separatar: 1
Location —
Command : 2
o MHame
Shared F .
a1 are Fopup - 2 Caption
—== ZlabalScript o= -
Eaption Separator: 2
Method : 1 0.F
0.1 [Methods:2 | 4 =
] —_|Mame
Frofile
Da!ta i . Command : 3
Criteria a.
Mame
Caption
a.x henus: 2 o | mMenu:d Separator: 3
— == Location 0.;
0.
Wl etaclass Command . 4
Hame o.r Fopup : 1 g:nl?on
0.z Caption P
Separator: 4
Method @ 2
Methods: 1| 0.7 o=
MHame
B [rata
n.- Criteria
1 Note

The DTD is available at <install dir>\Add-ins\XMLAddins.dtd.

Customizing and Extending PowerDesigner

Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 359

The profileis the root element of the XML file add-in descriptor and can contain:

® A shared element - which defines the menus that are always available and their associated methods, along
with a GlobalScript attribute, which can contain a global script for shared functions.

e One or more Metaclass elements - which define commands and menus for a specific metaclass, identified by
its public name prefixed by its Type Library public name.

Both these elements can contain sub-elements as follows:

® Menus contains Menu elements that specify a location, which can be one of:
o Filelmport - shared only
o FileExport - metaclass only
o FileReverse - shared only
o Tools
o Help
o Object - metaclasses only (default)
Each Menu element can contain:

© A Command element - whose Name must be equal to the name of a Method, and whose Caption defines
the name of the command that appears in the menu.
o A separator element - which indicates that you want to insert a line in the menu.
o A popup element - which defines a sub-menu item that may in turn contain commands, separators, and
popups.
® Methods contains Method elements, which define the methods used in the menus, and which are defined by
aname and a VBScript. A method defined under a metaclass has the current object as a parameter.
Inheritance is taken into account, so that a menu defined on the metaclass PdCommon . NamedObject will be
available on PdOOM.Class.

The following example defines two menu items for the Perforce repository and the methods that are called by
them:

<?xml version="1.0" encoding="UTF-8"?>
<Profile>
<Metaclass Name="PdOOM.Model">
<Menus>
<Menu Location="Tools">
<Popup Caption="Perforce">
<Command Name="CheckIn" Caption="Check In"/>
<Separator/>
<Command Name="CheckOut" Caption="Check Out"/>
</Popup>
</Menu>
</Menus>
<Methods>
<Method Name="CheckIn">
Sub %Method% (obj)
execute command(p4, submit %Filename%, cmd PipeOutput)
End Sub
</Method>
<Method Name="CheckOut">
Sub %$Method% (ob7j)
execute command(p4, edit %$Filename%, cmd PipeOutput)
End Sub
</Method>
</Methods>
</Metaclass>
</Profile>

Customizing and Extending PowerDesigner
360 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

The following example defines a global script which is referenced by a method defined under a metaclass:

<?xml version="1.0" encoding="UTF-8"?>
<Profile>
<Shared>
<GlobalScript>
Option Explicit
Function Print (obj)
Output obj.classname & " " & obj.name
End Function
</GlobalScript>
</Shared>
<Metaclass Name="PdOOM.Class">
<Menus>
<Menu>
<Popup Caption="Transformation">
<Command Name="ToInt" Caption="Convert to interface"/>
<Separator/>
</Popup>
</Menu>
</Menus>
<Methods>
<Method Name="ToInt">
Sub %$Method$% (ob7j)
Print obj
ExecuteCommand (" $SMORPHEUS%\ToInt.vbs", "",
cmd InternalScript)
End Sub
</Method>
</Methods>
</Metaclass>
</Profile>

1 Note

To use your add-in, save it to the Add-ins directory beneath your PowerDesigner installation directory and
enable it through the PowerDesigner General Options window (see Core Features Guide > Modeling with
PowerDesigner > Customizing Your Modeling Environment > General Options > Add-Ins).

7.12 Launching Scripts and Add-Ins from Menus

You can extend PowerDesigner menus to add commands to call scripts defined in resource files or externally and
to launch executables and ActiveX add-ins. XML add-ins can be used to group and organize multiple commands.
You can extend the File, Tools, and Help menus, and the contextual menus available on objects in the Browser and
diagrams.

You can modify PowerDesigner menus in the following ways:

e Custom commands - are defined directly in PowerDesigner and can call executable programs or VB scripts
(see Adding Commands to the Tools Menu [page 362]).

e Menu and method extensions — are specified in a DBMS or language definition or extension file and define
commands for a specific target or model type (see Menus (Profile) [page 96]).

e ActiveX Add-Ins — are written in languages such as VB, C#, C++ or any language supporting COM, and permit
more complex interactions with PowerDesigner, such as enabling and disabling menu items based on object
selection, and interaction with the windows display environment (see Creating an ActiveX Add-in [page 358]).

Customizing and Extending PowerDesigner
Scripting PowerDesigner © 2016 SAP SE or an SAP affiliate company. All rights reserved. 361

1 Note

The XML syntax used to define menus in an ActiveX or XML add-in is the same as that used in the creation
of a menu extension, and you can use the resource editor menu XML page (seeMenus (Profile) [page 96])
to help you construct the syntax for your add-ins.

e XML Add-Ins — define multiple commands to call executable programs or VB scripts. Commands linked to the
same applications (for example, ASE, 1Q etc.) should be gathered into the same XML file (see Creating an XML
File Add-in [page 359]).

7.12.1 Adding Commands to the Tools Menu

You can create your own menu items in the PowerDesigner Tools menu to access PowerDesigner objects using
your own scripts or executable programs. You can define up to 256 commands in the Customize Commands
dialog, and control the contexts (model, diagram, and target type) in which they appear.

Procedure

1. Select| Tools » Execute Commands Customize Commands 3 and click the Add a row tool.

2. Enter the following properties:

Table 225:
Property ‘ Description
Name Specifies the name of the command that will appear in the menu. Names must be unique and
can contain a pick letter (&Generate Java will appear as Generate Java)
Submenu Specifies a submenu in which to place the command. You can enter your own or select one of:

o <None> - directly under |} Tools > Execute Commands }
o Check Model

o Export

o Generation

o Import - also appears under | File ¥ Import 3

o Reverse - also appears under|} File > Reverse-Engineer]

Customizing and Extending PowerDesigner
362 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

|
Property ’ Description

Context Specifies when the command is available. By default the command is available at all times
(*/*/%*).Click the ellipsis button to restrict the display of the command to a specific:

o Model type - for example OOM/ * / *

o Model and Diagram type - for example OOM/Class diagram/*

o Model, Diagram, and Target type - for example OOM/Class diagram/Java.By de-
fault, the list contains extensions available for the chosen model type. Click the Path tool
to navigate to another folder containing extensions or DBMS or language definition files.

Context Definition M=l E3

IF'DM;"M ultidimenzional Diagram/FPowerB ilder

Mods: |POM]

Diagrarm: I Multidimenszional Diagram j

Target resource; (IMEGE=IN sy j @
k. I Cancel | Help |

Type Specifies whether the command will launch an executable or VBScript.

Command Line Specifies the path to the executable or script file to run. Click the ellipsis button to navigate to
afile. If your file is a VBScript, you can review or edit the script by clicking the Edit With tool in
the toolbar.

Comment Specifies text that is displayed in the status bar when you select the command.

[SThow in Menu Specifies that the command should be displayed. Deselect this field to hide the command
while retaining its definition.

Accelerator Key Associates one of ten reserved keyboard shortcuts + + @to +
+ Ewith the command.

Customizing and Extending PowerDesigner
Scripting PowerDesigner

© 2016 SAP SE or an SAP affiliate company. All rights reserved. 363

3.

364

i Customize Commandsz [_ (O] x|
(B # B @ X dh
MHame Submenu Contest Type Command Line Cormmr |
1 B azic BPH ky Patterns BPh .= Executable Chdoc7uhtoolz\wmake.exe Thiz progranm «
= | Customized package My Pattems POk MMultidimers | VB Script C:AProgram FileshSybazehPowe: Thiz script img
1| | o

Click OK to save your changes.

Your command is now available under |» Tools » Execute Commands

Complete Links Ctil+F5

Carreert ta Package. .

Check Madel.. F4

Lompare Models.. EUH:E Submenu that gathers related commands Submenu
terage Madel. . Shift+F & MName of the command

Standalane Eeneration,..

Execute Commands m Bazic BPM Chrl+hd aj+1
Generate Physical Data Model=_Cti+G Edi/Fun Seript... CtlsShiftsyy ,_ vstomized packages ClrleMaj0
Generate Object-Onented Model. . ChiShift+0 Cuzstomize Commands...

Besources 3 \
LCuztamize Toalbars...

b enu [tem

Dizplay Preferences. .
todel Options...
General Options...

1 Note

Customized Commands are saved by default in the Registry at HKEY CURRENT USER\Software\Sybase
\PowerDesigner <v>\PlugInCommands\<submenu>and are available only to the user defining them.
To make them available to all users, create an entry at the same location under HKEY LOCAL MACHINE.

Customizing and Extending PowerDesigner
© 2016 SAP SE or an SAP affiliate company. All rights reserved. Scripting PowerDesigner

The name of the entry is the name of the command, and its value takes the following syntax, in which only
the <commandline> parameter is mandatory and must be terminated by a | (pipe) character

[Hide:] [Key:<accelerator>:] [Script:]<commandline>[|<comment>]

If you want to insert a pipe within a command, you must escape it with a second pipe.

B PowerDesigner
l:l Contrals
l:l DialogPreferences
l:l DigplayPreferences
l:l FolderOptions

EH:l FluglnCommands
. L5 My Programs ff;lf

Customizing and Extending PowerDesigner
Scripting PowerDesigner

Al

M ame | [rata

|

S

Regiztry entry Reqgistry entry value
[Mame of the Command] [Definition properties of the Command)

f Regiztry key
[Submenu of the Command]

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

B aszic BPM "Eeyw Chrl-Shift-1:C: AT oolswwmak e, exelT hiz program creat...
Ehj Customized packages "Few:Chl-Shift-0:Script:D:AProgram Filesh MyPreferedProar..

365

8 The PowerDesigner Public Metamodel

The PowerDesigner public metamodel is an abstraction of the metadata for all the PowerDesigner models,
describing the elements of a model, and the syntax and semantics of their manipulation.

You can review the public metamodel in PowerDesigner by opening <install dir>\Examples

\MetaModel . oom, and find exhaustive documentation of all the metamodel objects, collections, and methods
available via scripting, by selecting |» Help » Metamodel Objects Help . (see Using the Metamodel Objects Help
File [page 369]).

This OOM and help file help you understand the structure of your models, especially when working with:

® Generation Template Language (GTL) templates (see Customizing Generation with GTL [page 268]).
e VB scripts (see Scripting PowerDesigner [page 328]).
e PowerDesigner XML model files (see PowerDesigner Model File Format [page 371]).

41 PowerDesigner - [D0OM Metamodel::PdCDM, Dbjects - C:'Program Files', Sybase’,PowerD : - |E||i|
= Eile Edit Wiew Model Symbol Language Feport Repository Tools Window Help 2] x|
[oecHaRs|saax|s20|F|¢|acGaz | all »aa2es|25

=l =

;_-j Wharkspace -
E%} Metamodel

+-Z2 PdBPM

=Bl PdCDM
Features
Objects
= Spmbaolz
= Claszes
----- EE AbstractRequirement
- Association
B Associationattribute
-] Associationdtributeh
B AssociationLink
----- = associationLinkSymt
#-E Aszociationt apping
----- = AssociationSyrmbol
B Basedttribute
B Basedttibutetd appin
----- 2 BaseCheckMamedCl
----- 2 BaseDataSource
----- 2 BaselinkObject

----- E Ease!_og?ca!ED?CEDt -
4| | k

(] Local |44 Repositary | 4 LILI
Ready bnalysiz 2

The metamodel is divided into the following main packages:

e PdBPM - Business Process Model
e PdCDM - Conceptual Data Model

Customizing and Extending PowerDesigner
366 © 2016 SAP SE or an SAP affiliate company. All rights reserved. The PowerDesigner Public Metamodel

PdCommon - contains all objects shared between two or more models, and the abstract classes of the model.
For example, business rules, which are available in all models, and the BaseObject class, from which all model
objects are derived, are defined in this package. Other model packages are linked to PdCommon by
generalization links indicating that each model inherits common objects from the PdCommon package.

PdEAM - Enterprise Architecture Model
PdFRM - Free Model
PdGLM - Glossary Model

PdILM - Data Movement Model (the DMM was previously named Information Liquidity Model or ILM, and the
PdILM library name has been retained for backwards compatibility)

PdLDM - Logical Data Model

PAMTM - Merise Model (available in French only)
PdOOM - Object Oriented Model

PdPDM - Physical Data Model

PdPRJ - Project

PdRMG - Repository

PdARQM - Requirements Model

PdXSM - XML Model

PAWSP - Workspace

Each of these top-level packages contains the follow kinds of sub-objects, organized by diagram or, in the case of
PdCommon, by sub-packages:

Features - All the features implemented by classes in the model. For example, Report (available in all models)
belongs to PdCommon, and AbstractDataType belongs to PAPDM.

Objects - Design objects in the model
Symbols - Graphical representation of design objects

8.1 Navigating in the Metamodel

You can expand and collapse the packages in the Browser to explore their contents. Double-click a diagram to
display it in the canvas.

Each metaclass has a name, contains zero or more attributes and assumes zero or more roles in associations with
other classes, which allow you to identify collections. The PowerDesigner public metamodel uses standard UML
concepts:

Public Names - Each object in the metamodel has a name and a code corresponding to the public name of the
object, which is the unique identifier of the object in a model library or package. Public names are referenced
in PowerDesigner XML model files and when using GTL and scripting. The public name often matches the
object's name in the PowerDesigner interface, but where the two diverge, the public name must be used in
scripts and GTL templates.
Classes - are used to represent metadata in the following ways:
o Abstract classes - are used only to share attributes and behaviors, and are not visible in the
PowerDesigner interface.
o Instantiable/Concrete classes - correspond to objects displayed in the interface. They have their own
attributes and behaviors in addition to those they inherit from abstract classes through generalization
links. For example, NamedObject is an abstract class, which contains standard attributes like Name,

Customizing and Extending PowerDesigner
The PowerDesigner Public Metamodel © 2016 SAP SE or an SAP affiliate company. All rights reserved. 367

Code, Comment, Annotation, and Description, which are inherited by most PowerDesigner design
objects.

e C(Class attributes - are object properties. Classes linked to other classes with generalization links usually
contain derived attributes that are calculated from the attributes or collections of the parent class. Neither
derived attributes, nor attributes migrated from navigable associations, are stored in the model file. Non-
derived attributes are proper to the class, and are stored in the model and saved in the model file.

e Associations - express the semantic connections between classes. In the association property sheet, the roles
carry information about the end object of the association. PowerDesigner objects are linked to other objects
using collections, and the role at the other end of the association gives the name of the collection for an
object. For example, NamedO7ject has a collection of business rules called AttachedRules, and
BusinessRule has a collection of objects called Objects:

. 0.
NamedObject
T Objects o

fabstract} _D'dETE'd_AﬂEm-EdFlulEﬁ'_:‘ BusinessRule

When associations have two roles, only the collection with the navigable role will be saved in the XML file. In
the case, only the AttachedRules collection is saved.

e Compositions — express an association where the children live and die with the parent and, when the parent is
copied, the child is also copied. For example, Table has a composition association with the Column class:

0.1 o.-
—== Column

Tt l Ordered Columns ~

® Generalizations - show the inheritance links existing between a more general, usually abstract, class and a
more specific, usually instantiable, class. The more specific class inherits from the attributes of the more
generic class, these attributes are called derived attributes. For example, Class inherits from Cclassifier

Classifier
Class [{abstrach

Each diagram shows classes the connections between metaclasses via associations and generalizations. Classes
in green are defined in the current diagram, while classes in purple are present only to provide context. To
investigate a purple class, right-click it and select [Related Diagrams » <diagram> 4to open the diagram where
it is defined.

In the following example, BusinessRule is being defined, while NamedObject and BaseModel are present only
to show inheritance and composition links:

Customizing and Extending PowerDesigner
368 © 2016 SAP SE or an SAP affiliate company. All rights reserved. The PowerDesigner Public Metamodel

=SSQUERYASLE GLOBAL ==

BusinessRule 0.1
Fadkage

Type : shaort
ClientExpression : TEXT
SanrerExpression : TEXT

o.r
BusineszRules

Double-click any class to show its property sheet and review the following tabs:

e General - provides the public name in the Name and Code fields, a Comment providing a brief description of
the class, and shows whether it is Abstract.

1 Note

Objects, such as RepositoryGroup that do not support scripting bear the <<notScriptable>>
stereotype.

e Attributes - lists the properties defined directly on the class, but not those that it inherits via any parent
classes.

e Associations - lists the migrated associations for the class, which represent collections. The Role B column
lists the collections for the class, while the Role A column lists the collections in which the class figures.

e Operations - lists the methods available for scripting.

® Dependencies - contains the following sub-tabs (among others):
o Associations

o Generalizations - lists the generalization links where the current class is the child and inherits attributes
from a parent class.

o Specializations - lists the generalization links where the current class is the parent and its children inherit
attributes fromiit.

o Shortcuts - lists the shortcuts created for the current object.
e Definition - may include further information on the Description or Annotation sub-tabs.

8.2 Using the Metamodel Objects Help File

PowerDesigner provides documentation of the metamodel available from | Help » Metamodel Objects Help 3.

The file can be opened from the Edit/Run Script dialog (see Running Scripts in PowerDesigner [page 329]) or
from a metaclass in a resource file (see Metaclasses (Profile) [page 39]) by clicking the Find in MetaModel Help

button or pressing + [F1] It can also be opened from any object property sheet by pressing + or
clicking the Property Sheet Menu button and selecting Find in MetaModel Help.

Customizing and Extending PowerDesigner
The PowerDesigner Public Metamodel © 2016 SAP SE or an SAP affiliate company. All rights reserved. 369

. =5’ Sybase PowerDesigner 16.5.0 OLE Help

e &

Hide Back Prnt Options

Table: Table Quick links: Librarv PAPDM Basic elements
Conterts | index | Search
[£] ProcedureTemp « # BaseObject =1
[E] Reference B IdentifiedObject
%gﬂmegiﬂt B ExtensibleObiect
‘erence Sym -
[£] ResuttColumn B NamedObject .
[Role B NamedClassifier
[£] sequence T BaseTable
%Stomge H Table
Synorym cls_Tat
[E] Table Description:
[£] TableCallapsing

% PE:EMEDW”Q A table is a collection of rows (records) that have associated columns.
ablespace
[£] TableSymbal H |

@ TargetTable

[£] TestDataProfile

@ Trigger

@ Triggerltem
TriggerTemplate Spectfic Members:

[P

E Usq . erties: Collections: |Meﬂoﬂs:

@ Vertical Partitioni - -

[E] View PrimaryKey Keys UpdateStatistics

[5] ViewColumn CheckExpressionPreview InReferences EstimateCostSaving

[£] Viewindex AbstractDataType OutReferences SetEstimatedRows

% ﬂzzﬂﬁz: RowGrowthRateForLifeCycle Procedures EIEETET

N AbowuiDebormr e £ Number DatabasePackages GetEstimatedSize
— » e L= IEEmm

|

The three top-level nodes contain the following documentation:

Table 226:

Nodes ‘ What you can find...

Basic Elements Provides general information on:

e Collections of objects - provide the principal way of navigating the metamodel (see Brows-
ing and Modifying Collections (Scripting) [page 336]).

e Structured Types - used for positioning symbols in diagrams (see Displaying, Formatting,
and Positioning Symbols (Scripting) [page 340]).

e Global properties, constants, and functions - provide entry points for scripting (see Manip-
ulating Models, Collections, and Objects (Scripting) [page 334]).

Libraries Provides exhaustive documentation of all scriptable properties, collections, and methods for
metamodel objects, organized by module.

Appendix Includes an expandable hierarchy showing all the metaclasses in the PowerDesigner metamo-
del, a VBScript code sample, and a list of the class ID constants used to identify objects in cer-

tain contexts (see Accessing and Modifying Objects and Properties (Scripting) [page 338]).

To obtain information about the properties, collections and methods available for a particular metaclass, navigate
to it under the Libraries category, or locate it in the index. All properties, collections, and methods are listed in the
index.

Customizing and Extending PowerDesigner
370 © 2016 SAP SE or an SAP affiliate company. All rights reserved. The PowerDesigner Public Metamodel

Each metaclass shows the hierarchy of ancestors from which it is descended and inherits. After a brief description
and symbol, it then lists:

e Specific Members - a table which lists the properties, collections, and methods defined directly on this
metaclass
e Full definition - which lists, in separate tables, the properties, collections, and methods inherited from each of
its ancestors. For example, the Table metaclass (located at Libraries\PdPDM\Table) inherits members
from:
o PdCommon.BaseObject
o PdCommon.ldentifiedObject
o PdCommon.ExtensibleObject
o PdCommon.NamedObject
o PdCommon.NamedClassifier
o PdPDM.BaseTable
o PdPDM.View

8.3 PowerDesigher Model File Format

PowerDesigner models are made up of objects, the properties and interactions of which are explained in the
public metamodel. Models can be saved in either binary or XML file formats. Binary files are smaller and
significantly quicker to open and save, but XML model files can be edited by hand or programatically (and DTDs
are provided for each model type in the DTD folder in the installation directory).

Caution

You can modify an XML model file using a text or XML editor, but you should take care, as even a minor syntax
error may render the file unusable. If you create an object in an XML file by copy and paste, make sure that you
remove the duplicated OID. PowerDesigner will automatically assign an OID to the new object when next you
open the model.

The following elements are used in PowerDesigner XML files:

® <o:<object>>- A PowerDesigner model object. The first time the object is mentioned in a collection,
PowerDesigner assigns it an id using the <o:<object> Id="<XYZ>"> syntax (where <XYZ> is a unique
identifier automatically assigned to an object when it is found for the first time) or references it with the
<o:object Ref="<XYZ>"/>syntax. Object definition is only used in composition collections, where the
parent object owns the children in the association.

® <c:<collection>> - A collection of objects linked to another object. You can use the PowerDesigner
metamodel to visualize the collections of an object. For example <c: Children>.

® <a:<attribute>>- Anobjectis made up of a number of attributes each of which you can modify
independently. For example <a:ObjectID>.

PowerDesigner XML model files have an <o :model> element at their root, which contains collections defined in
the PowerDesigner metamodel. The model object and all the other object elements that it contains define their
attributes and collections in sub-elements. The definition of an object implies the definition of its attributes and its
collections. PowerDesigner checks each object and drills down the collections of this object to define each new
object and collection in these collections, and so on, until the process finds terminal objects that do not need
further analysis.

Customizing and Extending PowerDesigner
The PowerDesigner Public Metamodel © 2016 SAP SE or an SAP affiliate company. All rights reserved. 371

You can search for an object in the metamodel using its object name in the XML file in order to better understand
its definition. Once you have found an object in the metamodel you can read the following information:

372

Each PowerDesigner object can have several collections corresponding to other objects to interact with, these
collections are represented by the associations existing between objects. The roles of the associations
(aggregations and compositions included) correspond to the collections of an object. For example, each
PowerDesigner model contains a collection of domains called Domains.

Usually associations have only one role, the role is displayed at the opposite of the class for which it
represents a collection. However, the metamodel also contains associations with two roles, in such case, both
collections cannot be saved in the XML file. You can identify the collection that will be saved from the
association property sheet: the role where the Navigable check box is selected is saved in the file.

In the following example, association has two roles which means Classifier has a collection Actors, and Actor2
has a collection ImplementationClasses:

Classifier
Tabstract}
+ Stereotype : CHARZSS
+ Wisibility : CHARE) = TEXTM")
+ Abstract BOOL = FALSE

o.c
Implementation

o=
PAuctors

22GLERVABLE ==
Actor?

+ SymbolDizplayed : BOOL

If you display the association property sheet, you can see that the Navigable check box is selected for role
ImplementationClass, which means that only collection ImplementationClass will be saved in file.

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

Customizing and Extending PowerDesigner
The PowerDesigner Public Metamodel

|8 Association Properties - ImplementationClazses (Implem._.. =] E3

Clazs & Clazz B I

ol ol —== Classifier

ActollmplementationClasses

Actor

Geperal Detail |Mapping| Motes I Rules I Dependenciesl Wersion Infu:ul

—Actor — Clazzifier
Im IImpIementatiDnElasses
izibility: igihility:
I public j I public j
ultiplicity: Orderning: b ultiplicity: Ordering:
IEI.." j ILInu:uru:Iereu:I j IEI j ILInu:uru:Iered j
[T Mavigable ¥ Mavigable
— Aggregation # Composition
Container: % Fale & ' EoleE
Indizator: £ Aogegation £ Composition

<< Less | - ok, I Eancell Apply | Help |

Attributes with the IOBJECT data type are attributes in the metamodel while they appear as collections

containing a single object in the XML file. This is not true for Parent and Folder that do not contain any
collection.

8.3.1 Example: Simple OOM XML File

In this example, we will explore the structure of a simple OOM model file containing two classes and one
association.

Customer

+ Hame
+ Company
+ 1D

sen der
0.7 Order

+ OrderMumber
+ Orderfsmount

Customizing and Extending PowerDesigner

The PowerDesigner Public Metamodel © 2016 SAP SE or an SAP affiliate company. All rights reserved. 373

The file starts with several lines stating XML and model related details.

The first object to appear is the root of the model <o:RootObject Id="01">. RootObject is a model container that is
defined by default whenever you create and save a model. RootObject contains a collection called Children that is
made up of models.

In our example, Children contains only one model object that is defined as follows:

<o:Model Id="o2">
<a:0bjectID>3CEC45F3-A77D-11D5-BB88-0008C7EA916D</a:0bjectID>
<a:Name>ObjectOrientedModel 1</a:Name>
<a:Code>OBJECTORIENTEDMODEL_1</a:Code>
<a:CreationDate>1000309357</a:CreationDate>
<a:Creator>arthur</a:Creator>
<a:ModificationDate>1000312265</a:ModificationDate>
<a:Modifier>arthur</a:Modifier>

<a:ModelOptionsText>

[ModelOptions]

Below the definition of the model object, you can see the series of ModelOptions attributes. Note that
ModelOptions is not restricted to the options defined in the Model Options dialog box of a model, it gathers all
properties saved in a model such as intermodel generation options.

After ModelOptions, you can identify collection <c:ObjectLanguage>. This is the object language linked to the
model. The second collection of the model is <c:ClassDiagrams>. This is the collection of diagrams linked to the
model, in our example, there is only one diagram defined in the following paragraph:

<o:ClassDiagram Id="o4">
<a:0bjectID>3CEC45F6-A77D-11D5-BB88-0008C7EA916D</a:0bjectID>
<a:Name>ClassDiagram 1</a:Name>
<a:Code>CLASSDIAGRAM 1</a:Code>
<a:CreationDate>1000309357</a:CreationDate>
<a:Creator>arthur</a:Creator>
<a:ModificationDate>1000312265</a:ModificationDate>
<a:Modifier>arthur</a:Modifier>
<a:DisplayPreferences>

Like for model options, ClassDiagram definition is followed by a series of display preference attributes.

Within the ClassDiagram collection, a new collection called <c:Symbols> is found. This collection gathers all the
symbols in the model diagram. The first object to be defined in collection Symbols is AssociationSymbol:

<o:AssociationSymbol Id="o5">
<a:CenterTextOffset> (1, 1l)</a:CenterTextOffset>
<a:SourceTextOffset>(-1615, 244)</a:SourceTextOffset>
<a:DestinationTextOffset> (974, -2)</a:DestinationTextOffset>
<a:Rect>((-6637,-4350), (7988,1950))</a:Rect>
<a:ListOfPoints> ((-6637,1950), (7988,-4350))</a:ListOfPoints>
<a:ArrowStyle>8</a:ArrowStyle>
<a:ShadowColor>13158600</a:ShadowColor>
<a:FontList>DISPNAME 0O Arial,8,N

AssociationSymbol contains collections <c:SourceSymbol> and <c:DestinationSymbol>. In both collections,
symbols are referred to but not defined: this is because ClassSymbol does not belong to the SourceSymbol or
DestinationSymbol collections.

<c:SourceSymbol>

Customizing and Extending PowerDesigner
374 © 2016 SAP SE or an SAP affiliate company. All rights reserved. The PowerDesigner Public Metamodel

<o:ClassSymbol Ref="06"/>
</c:SourceSymbol>

<c:

DestinationSymbol>

<o:ClassSymbol Ref="o7"/>
</c:DestinationSymbol>

The association symbols collection is followed by the<c:Symbols> collection. This collection contains the
definition of both class symbols.

<o:ClassSymbol Id="o6">

<a:
:ModificationDate>1012204025</a:ModificationDate>
:Rect>((-18621,6601), (-11229,12675))</a:Rect>
:FillColor>16777215</a:FillColor>
:ShadowColor>12632256</a:ShadowColor>
:FontList>ClassStereotype 0 Arial,8,N

<a

CreationDate>1012204025</a:CreationDate>

Collection <c:Classes> follows collection <c:Symbols>. In this collection, both classes are defined with their
collections of attributes.

<o:Class Id="o0l0">

<a:
:Name>Order</a:Name>

:Code>0Order</a:Code>
:CreationDate>1012204026</a:CreationDate>
:Creator>arthur</a:Creator>
:ModificationDate>1012204064</a:ModificationDate>
:Modifier>arthur</a:Modifier>

:Attributes>

ObjectID>10929C96-8204-4CEE-911#-E6F7190D823C</a:0bjectID>

<o:Attribute Id="ol4">

Attribute is a terminal object: there is not further ramification required to define this object.

Each collection belonging to an analyzed object is expanded, and analyzed and the same occurs for collections

within collections.

Once all objects and collections are browsed, the following markups appear:

</o:RootObject>
</Model>

Customizing and Extending PowerDesigner
The PowerDesigner Public Metamodel © 2016 SAP SE or an SAP affiliate company. All rights reserved.

375

Important Disclaimers and Legal Information

Coding Samples

Any software coding and/or code lines / strings ("Code") included in this documentation are only examples and are not intended to be used in a productive system
environment. The Code is only intended to better explain and visualize the syntax and phrasing rules of certain coding. SAP does not warrant the correctness and
completeness of the Code given herein, and SAP shall not be liable for errors or damages caused by the usage of the Code, unless damages were caused by SAP
intentionally or by SAP's gross negligence.

Accessibility

The information contained in the SAP documentation represents SAP's current view of accessibility criteria as of the date of publication; it is in no way intended to be a
binding guideline on how to ensure accessibility of software products. SAP in particular disclaims any liability in relation to this document. This disclaimer, however, does
not apply in cases of wilful misconduct or gross negligence of SAP. Furthermore, this document does not result in any direct or indirect contractual obligations of SAP.

Gender-Neutral Language

As far as possible, SAP documentation is gender neutral. Depending on the context, the reader is addressed directly with "you", or a gender-neutral noun (such as "sales
person" or "working days") is used. If when referring to members of both sexes, however, the third-person singular cannot be avoided or a gender-neutral noun does not
exist, SAP reserves the right to use the masculine form of the noun and pronoun. This is to ensure that the documentation remains comprehensible.

Internet Hyperlinks

The SAP documentation may contain hyperlinks to the Internet. These hyperlinks are intended to serve as a hint about where to find related information. SAP does not
warrant the availability and correctness of this related information or the ability of this information to serve a particular purpose. SAP shall not be liable for any damages
caused by the use of related information unless damages have been caused by SAP's gross negligence or willful misconduct. All links are categorized for transparency
(see: http://help.sap.com/disclaimer).

Customizing and Extending PowerDesigner
376 © 2016 SAP SE or an SAP affiliate company. All rights reserved. Important Disclaimers and Legal Information

http://help.sap.com/disclaimer/

Customizing and Extending PowerDesigner
Important Disclaimers and Legal Information © 2016 SAP SE or an SAP affiliate company. All rights reserved. 377

go.sap.com/registration/
contact.html

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any
form or for any purpo ithout the express permission of SAP SE
or an SAP affiliate company. The information contained herein may
be changed without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software

vendors. National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate compa y
for informational purposes only, without representation or warranty
of any kind, and SAP or its affiliated companies shall not be liable for
errors or omissions with respect to the materials. The only
warranties for SAP or SAP affiliate company products and services
are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein
should be construed as constituting an additional warranty.

SAP and other SAP products and services mentioned herein as well
as their respective logos are trademarks or registered trademarks
of SAP SE (or an SAP affiliate company) in Germany and other
countries. All other product and service names mentioned are the
trademarks of their respective companies.

Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx for additional trademark information and notices.

https://go.sap.com/registration/contact.html
https://go.sap.com/registration/contact.html
http://www.sap.com/corporate-en/legal/copyright/index.epx
http://www.sap.com/corporate-en/legal/copyright/index.epx

	Customizing and Extending PowerDesigner
	Content
	1 PowerDesigner Resource Files
	1.1 Opening Resource Files in the Editor
	1.2 Navigating and Searching in Resource Files
	1.3 Editing Resource Files
	1.4 Saving Changes
	1.5 Sharing and Embedding Resource Files
	1.6 Creating and Copying Resource Files
	1.7 Specifying Directories to Search for Resource Files
	1.8 Comparing Resource Files
	1.9 Merging Resource Files

	2 Extension Files
	2.1 Creating an Extension File
	2.2 Attaching Extensions to a Model
	2.3 Exporting an Embedded Extension File for Sharing
	2.4 Extension File Properties
	2.5 Example: Adding a New Attribute from a Property Sheet
	2.6 Example: Creating Robustness Diagram Extensions
	2.6.1 Creating New Types of Objects with Stereotypes
	2.6.2 Specifying Custom Symbols for Robustness Objects
	2.6.3 Example: Creating Custom Checks on Instance Links
	2.6.4 Example: Defining Templates to Extract Message Descriptions
	2.6.5 Example: Creating a Generated File for the Message Information
	2.6.6 Example: Testing the Robustness Extensions

	2.7 Metaclasses (Profile)
	2.7.1 Extended Objects, Sub-Objects, and Links (Profile)

	2.8 Stereotypes (Profile)
	2.8.1 Creating New Metaclasses with Stereotypes

	2.9 Criteria (Profile)
	2.10 Extended Attributes (Profile)
	2.10.1 Calculated Attribute Scripts
	2.10.2 Creating an Extended Attribute Type
	2.10.3 Specifying Icons for Attribute Values
	2.10.4 Linking Objects Through Extended Attributes
	2.10.5 Aggregating Attribute Values with Aggregated Metrics

	2.11 Extended Collections and Compositions (Profile)
	2.12 Calculated Collections (Profile)
	2.13 Dependency Matrices (Profile)
	2.13.1 Specifying Advanced Dependencies

	2.14 Forms (Profile)
	2.14.1 Adding Extended Attributes and Other Controls to Your Form
	2.14.2 Example: Creating Common Form Controls
	2.14.3 Example: Creating a Property Sheet Tab
	2.14.4 Example: Including a Form in a Form
	2.14.5 Example: Opening a Dialog from a Property Sheet

	2.15 Custom Symbols (Profile)
	2.16 Custom Checks (Profile)
	2.16.1 Example: PDM Custom Check
	2.16.2 Example: PDM Autofix

	2.17 Event Handlers (Profile)
	2.17.1 Example: Setting Default Property Values

	2.18 Methods (Profile)
	2.19 Menus (Profile)
	2.19.1 Example: Opening a Dialog Box from a Menu

	2.20 Templates (Profile)
	2.21 Generated Files (Profile)
	2.21.1 Example: JavaGenerated File and Templates
	2.21.2 Generating Your Files in a Standard or Extended Generation

	2.22 Transformations (Profile)
	2.22.1 Transformation Profiles (Profile)
	2.22.2 Developing Transformation Scripts

	2.23 XML Imports (Profile)
	2.23.1 XML Import Mappings
	2.23.2 Metamodel Mapping Properties
	2.23.3 Metamodel Object Properties

	2.24 Object Generations (Profile)
	2.24.1 Model-to-Model Generation Mappings

	2.25 Chart Datasets (Profile)
	2.25.1 Chart Examples

	2.26 Global Script (Profile)

	3 Object, Process, and XML Language Definition Files
	3.1 Settings Category: Process Language
	3.2 Settings Category: Object Language
	3.3 Settings Category: XML Language
	3.4 Generation Category
	3.4.1 Example: Adding a Generation Option
	3.4.2 Example: Adding a Generation Command and Task

	3.5 Profile Category (Definition Files)

	4 DBMS Definition Files
	4.1 Triggers Templates, Trigger Template Items, and Procedure Templates
	4.2 Database Generation and Reverse Engineering
	4.2.1 Script Generation
	4.2.1.1 Extending Generation with Before and After Statements

	4.2.2 Script Reverse Engineering
	4.2.3 Live Database Generation
	4.2.4 Live Database Reverse Engineering
	4.2.4.1 Creating Queries to Retrieve Additional Attributes
	4.2.4.2 Calling Sub-Queries with the EX Keyword
	4.2.4.3 Live Database Reverse Engineering Physical Options
	4.2.4.4 Live Database Reverse Engineering Function-based Index
	4.2.4.5 Live Database Reverse Engineering Qualifiers

	4.2.5 Defining Generation and Reverse-Engineering of New Metaclasses
	4.2.6 Adding Scripts Before or After Generation and Reverse Engineering

	4.3 General Category (DBMS)
	4.4 Script/Sql Category (DBMS)
	4.4.1 Syntax Category (DBMS)
	4.4.2 Format Category (DBMS)
	4.4.3 File Category (DBMS)
	4.4.4 Keywords Category (DBMS)

	4.5 Script/Objects Category (DBMS)
	4.5.1 Common Object Items
	4.5.2 Table Category (DBMS)
	4.5.3 Column Category (DBMS)
	4.5.3.1 Working with Null Values

	4.5.4 Index Category (DBMS)
	4.5.5 Pkey Category (DBMS)
	4.5.6 Key Category (DBMS)
	4.5.7 Reference Category (DBMS)
	4.5.8 View Category (DBMS)
	4.5.9 Tablespace Category (DBMS)
	4.5.10 Storage Category (DBMS)
	4.5.11 Database Category (DBMS)
	4.5.12 Domain Category (DBMS)
	4.5.13 Abstract Data Type Category (DBMS)
	4.5.14 Abstract Data Type Attribute Category (DBMS)
	4.5.15 User Category (DBMS)
	4.5.16 Rule Category (DBMS)
	4.5.17 Procedure Category (DBMS)
	4.5.18 Trigger Category (DBMS)
	4.5.19 DBMS Trigger Category (DBMS)
	4.5.20 Join Index Category (DBMS)
	4.5.21 Qualifier Category (DBMS)
	4.5.22 Sequence Category (DBMS)
	4.5.23 Synonym Category (DBMS)
	4.5.24 Group Category (DBMS)
	4.5.25 Role Category (DBMS)
	4.5.26 DB Package Category (DBMS)
	4.5.27 DB Package Sub-objects Category (DBMS)
	4.5.28 Parameter Category (DBMS)
	4.5.29 Privilege Category (DBMS)
	4.5.30 Permission Category (DBMS)
	4.5.31 Default Category (DBMS)
	4.5.32 Web Service and Web Operation Category (DBMS)
	4.5.33 Web Parameter Category (DBMS)
	4.5.34 Result Column Category (DBMS)
	4.5.35 Dimension Category (DBMS)
	4.5.36 Extended Object Category (DBMS)

	4.6 Script/Data Type Category (DBMS)
	4.7 Profile Category (DBMS)
	4.7.1 Using Extended Attributes During Generation
	4.7.2 Modifying the Estimate Database Size Mechanism
	4.7.2.1 Calling the GetEstimatedSize Event Handler on Another Metaclass
	4.7.2.2 Formatting the Database Size Estimation Output

	4.8 ODBC Category (DBMS)
	4.9 Physical Options (DBMS)
	4.9.1 Simple Physical Options
	4.9.2 Composite Physical Options
	4.9.3 Adding DBMS Physical Options to Your Forms

	4.10 PDM Variables and Macros
	4.10.1 Testing Variable Values with the [] Operators
	4.10.2 Formatting Variable Values
	4.10.3 Variables for Tables and Views
	4.10.4 Variables for Columns, Domains, and Constraints
	4.10.5 Variables for Keys
	4.10.6 Variables for Indexes and Index Columns
	4.10.7 Variables for References and Reference Columns
	4.10.8 Variables for Triggers and Procedures
	4.10.9 Variables for Rules
	4.10.10 Variables for Sequences
	4.10.11 Variables for Synonyms
	4.10.12 Variables for Tablespaces and Storages
	4.10.13 Variables for Abstract Data Types
	4.10.14 Variables for Join Indexes (IQ)
	4.10.15 Variables for ASE & SQL Server
	4.10.16 Variables for Database Synchronization
	4.10.17 Variables for DB Packages and Their Child Objects
	4.10.18 Variables for Database Security
	4.10.19 Variables for Defaults
	4.10.20 Variables for Web Services
	4.10.21 Variables for Dimensions
	4.10.22 Variables for Extended Objects
	4.10.23 Variables for Reverse Engineering
	4.10.24 Variables for Database, Triggers, and Procedures Generation
	4.10.25 .AKCOLN, .FKCOLN, and .PKCOLN Macros
	4.10.26 .ALLCOL Macro
	4.10.27 .DEFINE Macro
	4.10.28 .DEFINEIF Macro
	4.10.29 .ERROR Macro
	4.10.30 .FOREACH_CHILD Macro
	4.10.31 .FOREACH_COLUMN Macro
	4.10.32 .FOREACH_PARENT Macro
	4.10.33 .INCOLN Macro
	4.10.34 .JOIN Macro
	4.10.35 .NMFCOL Macro
	4.10.36 .CLIENTEXPRESSION and .SERVEREXPRESSION Macros
	4.10.37 .SQLXML Macro

	5 Customizing Generation with GTL
	5.1 Creating a Template and a Generated File
	5.2 Extracting Object Properties
	5.3 Accessing Collections of Sub-Objects or Related Objects
	5.4 Formatting Your Output
	5.4.1 Controlling Line Breaks in Head and Tail Strings

	5.5 Conditional Blocks
	5.6 Accessing Global Variables
	5.7 GTL Operators
	5.8 Translation Scope
	5.9 Shortcut Translation
	5.10 Escape Sequences
	5.11 Calling Templates
	5.11.1 Inheritance and Polymorphism
	5.11.2 Passing Parameters to a Template
	5.11.3 Recursive Templates

	5.12 GTL-Specific Metamodel Extensions
	5.13 GTL Macro Reference
	5.13.1 .abort_command Macro
	5.13.2 .block Macro
	5.13.3 .bool Macro
	5.13.4 .break Macro
	5.13.5 .change_dir and .create_path Macros
	5.13.6 .comment and .// Macro
	5.13.7 .convert_name and .convert_code Macros
	5.13.8 .delete and .replace Macros
	5.13.9 .error and .warning Macros
	5.13.10 .execute_command Macro
	5.13.11 .execute_vbscript Macro
	5.13.12 .foreach_item Macro
	5.13.13 .foreach_line Macro
	5.13.14 .foreach_part Macro
	5.13.15 .if Macro
	5.13.16 .log Macro
	5.13.17 .lowercase and .uppercase Macros
	5.13.18 .object and .collection Macros
	5.13.19 .set_interactive_mode Macro
	5.13.20 .set_object, .set_value, and .unset Macros
	5.13.21 .unique Macro
	5.13.22 .vbscript Macro

	5.14 GTL Syntax and Translation Errors

	6 Translating Reports with Report Language Files
	6.1 Opening a Report Language File
	6.2 Creating a Report Language File for a New Language
	6.3 Report Language File Properties
	6.3.1 Values Mapping Category
	6.3.1.1 Example: Creating a Mapping Table, and Attaching It to a Specific Model Object

	6.3.2 Report Titles Category
	6.3.2.1 Example: Translating the HTML Report Previous Button
	6.3.2.2 All Report Titles Tab

	6.3.3 Object Attributes Category
	6.3.3.1 All Classes Tab
	6.3.3.2 All Attributes and Collections Tab

	6.3.4 Profile/Linguistic Variables Category
	6.3.5 Profile/Report Item Templates Category

	7 Scripting PowerDesigner
	7.1 Running Scripts in PowerDesigner
	7.1.1 VBScript File Samples

	7.2 Manipulating Models, Collections, and Objects (Scripting)
	7.2.1 Creating and Opening Models (Scripting)
	7.2.2 Browsing and Modifying Collections (Scripting)
	7.2.3 Accessing and Modifying Objects and Properties (Scripting)
	7.2.4 Creating Objects (Scripting)
	7.2.5 Displaying, Formatting, and Positioning Symbols (Scripting)
	7.2.6 Deleting Objects (Scripting)
	7.2.7 Creating an Object Selection (Scripting)
	7.2.8 Controlling the Workspace (Scripting)

	7.3 Manipulating the Repository (Scripting)
	7.3.1 Creating Repository Groups, Users and Folders
	7.3.2 Checking Documents In and Out (Scripting)
	7.3.3 Creating Configurations (Scripting)

	7.4 Creating Shortcuts (Scripting)
	7.5 Creating Mappings Between Objects (Scripting)
	7.6 Creating and Generating Reports (Scripting)
	7.7 Generating a Database (Scripting)
	7.8 Reverse Engineering a Database (Scripting)
	7.9 Creating and Accessing Extensions (Scripting)
	7.10 Accessing Metadata (Scripting)
	7.11 OLE Automation and Add-Ins
	7.11.1 Creating an ActiveX Add-in
	7.11.2 Creating an XML File Add-in

	7.12 Launching Scripts and Add-Ins from Menus
	7.12.1 Adding Commands to the Tools Menu

	8 The PowerDesigner Public Metamodel
	8.1 Navigating in the Metamodel
	8.2 Using the Metamodel Objects Help File
	8.3 PowerDesigner Model File Format
	8.3.1 Example: Simple OOM XML File

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

